
eMag Issue 46 - Nov 2016

PRESENTATION

#NetflixEverywhere 
- Global Architecture

PRESENTATION

Cloud-Based Microservices 
Powering BBC iPlayer

PRESENTATION 
Scaling Uber to 
1000 Services

FACILITATING THE SPREAD OF KNOWLEDGE AND INNOVATION IN PROFESSIONAL SOFTWARE DEVELOPMENT

Architectures you’ve 
always wondered about



FOLLOW US CONTACT US

Cloud-Based 
Microservices  
Powering BBC iPlayer
Stephen Godwin describes how the BBC inte-
grated its broadcast systems with AWS, how 
Video Factory is built around a microservices 
architecture that uses both REST and SQS.

#NetflixEverywhere - Global Architecture
Josh Evans discusses architectural patterns used by Netflix to enable seamless, 
multi-region traffic management, reliable, fast data propagation, and efficient service 
infrastructure.

The Netflix API Platform  
for Server-Side Scripting
Katharina Probst talks about the situations 
in which server-side scripting is a good solu-
tion for applications. She describes Netflix’s 
first approach, which uses Groovy scripts.

The Architecture That 
Helps Stripe Move Faster
Evan Broder talks about how Stripe has de-
signed the systems to speed up the development 
process and how the software infrastructure in 
their API enables the next tech companies to 
build faster.

Scaling Uber to 1000 
Services
Matt Ranney talks about Uber’s growth and how 
they’ve embraced microservices. This has led to 
an explosion of new services, crossing over 1,000 
production services in early March 2016.

GENERAL FEEDBACK feedback@infoq.com
ADVERTISING sales@infoq.com
EDITORIAL editors@infoq.com

facebook.com
/InfoQ

@InfoQ google.com
/+InfoQ

linkedin.com
company/infoq

https://www.facebook.com/InfoQ
https://twitter.com/infoq
https://plus.google.com/+infoq/posts
https://www.linkedin.com/company/infoq


A LETTER FROM  
THE EDITOR

What lessons can be learned from the architects who 
work on successful, large-scale systems such as those 
at Netflix and Uber? How can Stripe and the BBC 
make major changes without disrupting their exist-
ing customers? 

This eMag takes a look back at five of the most pop-
ular presentations from the Architectures You’ve Al-
ways Wondered About track at QCons in New York, 
London and San Francisco.

All the companies featured have large, cloud-based, 
microservice architectures, which probably comes 
as no surprise. While the stories told may sound sim-
ilar, each presenter adds new insight into the biggest 
challenges they face, and how to achieve success.

One common theme is that adding capacity, func-
tionality and resiliency are not free. The success of 
these systems depends on monitoring, tracing and 
logging tools tailored for a distributed system.

Josh Evans tells how Netflix always plans for failure, 
and tries to never fail the same way twice. This phi-
losophy has helped them grow to a truly global in-
frastructure, supporting millions of customers and 
devices around the world.

Matt Ranney shares what he wishes he knew before 
scaling Uber to over 1,000 services. Chief among them 

is to look for the trade-offs which are everywhere. Mi-
croservices can provide agility and reliability, but with 
significant operational complexity.

The BBC needed to completely rewrite the content 
processing system behind their iPlayer. Stephen 
Goodwin describes the move from an on-premise 
monolith to microservices and cloud storage. The up-
grade was successful, in part because the new archi-
tecture helped focus on building small, critical pieces 
of functionality.

Stripe has a similar approach, solving large problems 
by breaking them down and working incrementally. 
Evan Broder shares stories of three major projects, 
covering the evolution of the Stripe API, a rewrite of 
key PCI compliance software, and a migration be-
tween AWS data centers.

Coming back to Netflix, Katharina Probst discuss-
es the importance of non-functional requirements 
when implementing a new system using containers 
to isolate server-side scripts used by hundreds of dif-
ferent client devices calling the Netflix API.

If you’re currently using microservices successfully, 
and wondering what still lies ahead, or if you’re just 
considering breaking up a monolith, these experts 
can provide valuable wisdom learned from maintain-
ing and upgrading complex systems.

is a senior software engineer at 
Nordstrom with almost two decades 
of professional software development 

experience. His focus has always been on providing 
software solutions that delight his customers. He has 
worked in a variety of industries, including finance, health 
care, defense and travel. Thomas lives in Denver with 
his wife and son, and they love hiking and otherwise 
exploring beautiful Colorado

THOMAS 
BETTS

http://www.infoq.com/author/Victor-Grazi
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#NetflixEverywhere - Global Architecture

Watch online on InfoQ

Adapted from a presentation by Josh Evans, Director of Operations 
Engineering at Netflix, at QCon London 2015

Achieving a global architecture 
platform, with extremely high 
levels of availability and perfor-
mance, was an audacious goal 
for Netflix. Along the way, they 
suffered some very public out-
ages. The team adopted a fail-
ure-driven approach for upgrad-
ing and migrating their platform, 
trying to ensure they never failed 
the same way twice.

One of the most notable outag-
es occurred on December 24th, 

2012, when the Netflix service 
was essentially down for almost 
24 hours. In this case, the root 
cause was identified as “an ELB 
control plane issue” in Amazon’s 
US-EAST-1 region where Netflix 
servers were located. A mainte-
nance process was inadvertently 
run against the production ELB 
state data, thereby affecting Net-
flix and many other AWS custom-
ers. Another outage, on Febru-
ary 3rd, 2015, was caused when 
Netflix intentionally deployed 

configuration, but experienced 
some unexpected consequenc-
es.

The lesson is failure is inevita-
ble, and whether self-induced 
or caused by an underlying 
platform you’re running on, as-
signing blame is not helpful. The 
best way to deal with failure is to 
properly identify and address the 
root cause, so each failure mode 
only occurs once. This approach 
allowed Netflix to build a robust, 

Josh Evans is Director of Operations Engineering at Netflix, with experience in e-commerce, 
playback control services, infrastructure, tools, testing, and operations. Evans is a proponent 
of operational excellence - the continuous improvement of quality of customer experience 
and engineering velocity. For the past two years Evans has led Operations Engineering, an 
organization that creates, integrates, and evangelizes proven technical solutions and practices 
like continuous delivery, real-time analytics, and chaos engineering in order to achieve 
operational excellence at scale.

https://www.infoq.com/presentations/netflix-failure-multiple-regions
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global platform, in a straightfor-
ward and reasonably fast man-
ner.

Netflix is obsessed with striving 
for global ubiquity, in terms of 
devices as well as geography. 
When Netflix launched their 
streaming service in 2007, they 
chose the most ubiquitous plat-
form available at the time, Win-
dows. This has evolved to include 
set-top devices, smart TVs, video 
game consoles, and mobile de-
vices. Since 2010, when Netflix 
became available in Canada, 
they’ve continued to expand 
across the globe to Latin Amer-
ica, Western Europe and APAC, 
currently reaching 75 million 
customers.

Early History
In August 2008, when Netflix was 
still primarily a DVD-by-mail ser-
vice, a firmware update caused 
customer data corruption, and a 
three-day delay in service. At the 
time, Netflix had a single data 
center, and the failure was a clear 
indication that they needed a 
second data center.

Building a second data center 
was a challenge because Netflix 
has always been very focused 

on improving their core services, 
whether DVD or streaming. Rack-
ing and stacking servers in data 
centers was not adding differen-
tial value to the business. This led 
to embracing Amazon Web Ser-
vices to achieve better scale and 
elasticity, as well as flexibility for 
engineers to experiment in the 
environment. Although located 
in only US-EAST-1 to begin with, 
Amazon’s global footprint would 
provide long-term benefits for 
expansion.

The initial move to the cloud en-
vironment was only the first step 
in Netflix’s global evolution. Over 
time, significant changes can be 
seen in four architectural pillars: 
microservices, database, cache, 
and traffic.

Microservices
With the move to AWS, Netflix 
moved to microservices, al-
though they were simply referred 
to as distributed systems at the 
time. Departing from monolithic 
systems meant teams could work 
more independently, better un-
derstand their service, and more 
easily fix problems.

A visualization of the Netflix eco-
system shows the complexity of 

all the microservices which make 
up the middle tier and platform 
services. 

The challenge of microservices 
is responding to failures. Most 
importantly, the failure of a 
non-critical microservice should 
not cause a catastrophic failure 
of the system. Netflix has seen 
this scenario occur many times, 
which led to the development 
of many technologies, including 
Hystrix, to provide structured 
fallbacks and timeouts. Fallbacks 
provide a graceful degradation in 
service rather than failing hard, 
such as providing most popular 
titles when recommendations 
are not available.

Chaos principles are necessary 
for testing and enforcing the 
isolation of failures throughout 
the system. Chaos Monkey en-
sures an individual microservice 
or auto-scaling instance failure 
does not take down the cluster. 
The Failure Injection Testing (FIT) 
framework performs the same 
function with entire microser-
vices and clusters being removed 
from the ecosystem. Finally, Cha-
os Kong can move traffic be-
tween regions, and is used for 
both simulation purposes and in 

KEY TAKEAWAYS
Never fail the same way twice. Analyze root cause of failures and make 
strategic decisions to avoid them in the future.
Adding resiliency takes many forms. For Netflix, this meant adding 
redundancy from a second data center up through multiple global AWS 
regions.
Identify and invest in your architectural pillars.
Think globally, act locally. As small changes are made, always keep the final, 
larger goal in mind.

https://github.com/Netflix/Hystrix
https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey
http://techblog.netflix.com/2014/10/fit-failure-injection-testing.html
http://techblog.netflix.com/2015/09/chaos-engineering-upgraded.html
http://techblog.netflix.com/2015/09/chaos-engineering-upgraded.html
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response to real-time availability 
issues.

Database & Cache
The need to scale globally meant 
not using relational databases. 
SimpleDB was a NoSQL solution 
that provided persistence and 
other benefits, but was quickly 
overwhelmed by Netflix’s load. 
Caching was necessary to shield 
SimpleDB from that load. Exper-
iments using Memcached led 
to the development of EVCache 
(Ephemeral Volatile memCache), 
a sharded, clustered implemen-
tation of Memcached, optimized 
for how Netflix uses the cloud.

An individual EC2 instance con-
tains a Memcached instance, 
running Prana sidecar to connect 
to Netflix’s discovery service, al-
lowing applications to find and 
directly access a needed shard. 
Cache volatility is carefully man-
aged, with TTLs on data helping 
with drift, and an LRU mecha-
nism to evict least recently used 
records as the cache fills up.

Favoring local reads gives the 
lowest possible latency, around 
one to five milliseconds, and also 
reduces the cost of data transfer 
between availability zones. To 
facilitate the local reads, writes 
must be sent across the various 
zones, so some data transfer 
costs are necessary.

The EVCache layer effectively 
shielded SimpleDB, and exists 
in front of the microservices. By 
default, an application will call 
EVCache first, and only call the 
microservice directly when a 
cache miss occurs. The microser-
vice calls into SimpleDB, returns 
the result and populates the 
cache. This ensures that a second 
request, even within a few mil-
liseconds, will utilize the cache, 
leading to a 99% cache hit ratio.

A robust caching strategy allows 
Netflix to handle over 30 million 
requests per second, or almost 
two trillion requests per day. 
Achieving millisecond responses 
relies on hundreds of billions of 
objects in Memcached, distrib-

uted across tens of thousands of 
instances.

Traffic
In 2011, during the migration to 
the cloud, Netflix was also ex-
panding internationally as well 
as launching on several new de-
vices. New traffic from Canada 
and Latin America was joining all 
US traffic in US-EAST-1, which put 
all of Netflix’s eggs in one basket. 
With the launch in the UK, Net-
flix added EU-WEST-1, giving a 
second basket, and adding some 
resiliency.

Properly managing the traffic 
is primarily a function of Zuul, 
Netflix’s open source gateway 
service that provides dynamic 
routing, and DNS geo-mapping 
via UltraDNS to map countries to 
the appropriate AWS region.

Global distribution coincided 
with a more scalable and dura-
ble database solution, Cassan-
dra. In addition to being open 
source, Cassandra is multi-region 
capable and multi-directional, 
meaning no master node exists. 

https://aws.amazon.com/simpledb/
https://github.com/Netflix/EVCache
https://memcached.org/
https://github.com/Netflix/Prana
https://github.com/Netflix/zuul
http://cassandra.apache.org/
http://cassandra.apache.org/
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Regarding the CAP theorem, Cas-
sandra aligns well with Netflix’s 
preference for availability and 
partition tolerance, with applica-
tions designed to accept eventu-
al consistency.

Although Cassandra was a sub-
stantial improvement over Sim-
pleDB in terms of scalability, it 
wasn’t quite fast enough to aban-
don the benefits of EVCache. The 
tradeoff in complexity of main-
taining a caching layer and a da-
tabase layer is acceptable for the 
resulting performance of one to 
five millisecond responses.

Recalling the outage of Decem-
ber 24, which was caused by an 
ELB service event, Netflix wanted 
to survive a regional ELB outage. 
Adding the second region in the 
US was the first step in the surviv-
al plan. Primary DNS routing in 

the US and Canada accounts for 
state and province, allowing traf-
fic to be split between US-EAST-1 
and US-WEST-2. In the event of 
an outage at the ELB layer within 
one zone, all traffic can be routed 
to one region via DNS. The Zuul 
proxy can then route some traffic 
back to the other region, behind 
the ELB, bypassing the failure 
completely. This required Zuul 
to be updated with geo-location 
capabilities, and the Eureka dis-
covery service became multi-re-
gion aware.

Although never used for an ELB 
failure, the upgrades were a nec-
essary building block towards 
handling a large-scale, full re-
gional outage. To survive such 
an event meant being able to 
evacuate one region and send all 
traffic to the other, stable region. 
This requires changes to the data 

architectural pillar, with data rep-
lication allowing any customer to 
be served by either region.

Revisiting Database & 
Cache
Cassandra already has a relatively 
straight-forward solution to this 
scenario. As with only a single re-
gion, a quorum process ensures 
writes have reached a sufficient 
number of nodes. Then, the co-
ordinator node starts the replica-
tion process with a coordinator in 
the other region to update those 
nodes. The process is bidirection-
al, with a nightly job to clean up 
any drift or missed writes.

EVCache needed a similar repli-
cation process, but in this case, 
it wasn’t built-in, so a fairly com-
plex, custom solution needed 
to be created. In addition to an 
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application updating EVCache, it 
now also added metadata to an 
SQS queue. An EVCache replica-
tor would read the metadata for 
a set operation out of the queue, 
fetch the most recent cached 
data, and send it to a replication 
writer in the other region to up-
date the cache for local reads in 
that region. As with Cassandra’s 
replication, EVCache’s is bidirec-
tional.

With the database and cache ful-
ly replicated between regions, 
traffic management needed to 
evolve, with geolocation routing 
between regions. By default, DNS 
pointed directly to the ELB for 
each region. Because this proved 
too difficult to update DNS in re-
al-time, the solution was to cre-
ate a shim layer in front of the 
ELB. DNS then pointed to a stat-
ically addressed shim in front of 
each AWS region, which directed 
traffic down to the correspond-
ing ELB. This allowed a single 
shim to be easily re-configured 
to direct its traffic to a different 
region as necessary, and then 
switched back after the outage.

Global Ubiquity
On January 6th, 2005, CEO Reed 
Hastings announced that Net-
flix was now (almost) every-
where, with a launch into 130 
additional countries in one day. 
This included the addition of 
several languages with interest-
ing challenges, from building a 
pictograph search keyboard in 
Japanese, to an inverted user 
interface for right-to-left Arabic. 
Content also became ubiquitous, 
with Daredevil, season 2, launch-
ing on the same day, on all devic-
es and all countries.

This global ubiquity is only pos-
sible with global availability. 
The aptly named Netflix Global 
project ensures that if any re-
gion fails, traffic can be routed to 

another region, and more desir-
ably, multiple regions; an outage 
in US-EAST-1 would send some 
traffic to US-WEST-2 and some 
to EU-WEST-1. The system is flex-
ible enough to allow for cascad-
ing failovers. If EU-WEST-1 went 
down, all traffic from Europe 
would be sent to US-EAST-1, and 
some of its traffic would then be 
sent to US-WEST-2 to distribute 
the load.

Moving from the active-ac-
tive setup in the US to full data 
replication in all three regions 
required another upgrade to 
EVCache. SQS was no longer ad-
equate, both from a latency per-
spective, but also because SQS 
is a read-once queue. Kafka was 
chosen as a replacement to SQS, 
and provided better scalability 
and performance, as well as han-
dling multiple readers accessing 
the same queue. This solution 
can currently handle over a mil-
lion replications per second.

As with the prior work done rep-
licating data in Cassandra, much 
of the needed functionality was 
built-in. Starting with the US 
ring, in two regions, and a com-
pletely separate EU ring, the goal 
was to create three, global rings. 
The first step was to extend the 
US Ring from US-EAST-1 into the 
EU region, then run repair opera-
tions on the new EU nodes. A fi-
nal forklift operation, along with 
some data cleanup and config-
uration work, got to the desired 
state, with every cluster now 
having a global ring replicating 
to all regions, essentially simulta-
neously.

The final piece of global ubiquity 
again focused on traffic manage-
ment. Virtual DNS regions were 
created, with default clustering 
of geographic regions into AWS 
zones. APAC and the western 
United States and Canada go into 
US-WEST-2. US-EAST-2 is split 

into two parts, the first with most 
of Latin America, and the second 
with Mexico joining the eastern 
US and Canada. EU-WEST-1 han-
dles Europe, the Middle East and 
Africa.

The shim layer evolved to create 
a second layer, known as the or-
igin layer, which is just CNAMEs, 
or aliases, that always point to 
certain ELBs. The magic happens 
between the virtual and origin 
level, with simple remapping of 
CNAMEs providing a variety of 
failover scenarios. For example, a 
split failover can take the two US 
East virtual regions, and send Lat-
in America traffic to the US West 
region, and eastern North Ameri-
can traffic to Europe. A cascading 
failover out of US West can direct 
that traffic to US East, to join Lat-
in America, while pushing east-
ern North America to Europe.

In a real failure scenario, or a Cha-
os Kong event, where error rates 
start climbing in one region, 
several layers of traffic manage-
ment come into play. Initially, the 
Zuul proxy will be used to start 
re-routing some traffic to other 
regions, based on where more 
capacity currently exists. Au-
to-scaling kicks in to handle the 
additional load. Once fully scaled 
up, the DNS cutover occurs, and 
the Zuul proxy can take a break. 
After the recovery work is com-
plete, the process is reversed, 
with the previously failing region 
being scaled back up, and Zuul 
and DNS being used to reroute 
traffic.

What Work Remains?
Although reaching such global 
ubiquity can seem like the work 
is complete, much is left to be 
done, both on the business and 
technical sides of Netflix. Deci-
sions on where to invest in lo-
calization will be accompanied 
by corresponding development 
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work. Global latency also be-
comes a bigger issue, especially 
in countries far from the AWS re-
gions currently in use. This may 
lead to expanding into addition-
al AWS regions, or experimenting 
with embedded caches within a 
CDN outside of AWS, which Net-
flix currently uses.

Monitoring tools based on ma-
chine learning will hopefully be 
able to replace manually con-
figured alerts, which can be 
time-consuming to create and 
are rarely updated as needed. 
Similar work is being done with 
self-healing systems and auto-
matic remediation.

Better utilization of spare ca-
pacity will help the bottom line. 
Some of this capacity is provi-
sioned to handle failover, but 
there are also periods of time 
with less traffic, and auto-scaling 
can be tweaked, possibly with 
significant cost savings. Those 
down periods can also be iden-
tified as times to perform batch 
processes, rather than letting 
compute go unused, or needing 
to add additional capacity on top 
of high utilization periods.

Although all the necessary tech-
nology exists, a failover scenario 
currently takes about 30 minutes 
to implement. A goal is to get 
that down to about five minutes, 
which can have a significant im-
pact on availability.

A final challenge is to remove the 
need to have both a caching lay-
er and a database. Consolidating 
that behind an obstruction layer 
would make application devel-
opment much more seamless 
and efficient.

Key Takeaways
Never fail the same way twice. 
For Netflix, this meant analyzing 
the root cause of failures, and 

making strategic decisions to 
overcome them. It also meant 
running regular chaos and Kong 
exercises, to ensure the solutions 
they created actually handled 
the failure scenario appropriate-
ly.

Adding resiliency follows many 
forms, but starts with moving 
away from a single data center 
and managing your own infra-
structure. Moving to the cloud 
provides multiple data centers, 
but regional issues can still exist. 
An island model provides region-
al containment. An isthmus can 
bypass the ELB. Active-Active al-
lows regional failover. Finally, go-
ing global provides true ubiquity, 
resiliency, and efficiency.

Invest in your architectural pil-
lars. They may be slightly differ-
ent from the four discussed here, 
microservices, database, cache, 
and traffic management, but 
the core ideas still apply. Going 
multi-region will always involve 
traffic management. Even with-
out fully adopting microservices, 
a small number of services at a 
minimum will probably exist.

Lastly, think globally, act locally. 
As Netflix worked to solve each 
current problem, they always 
knew at some point they want-
ed to go global. By constantly 
looking ahead to that long-term 
strategy, the solutions they cre-
ated always took them one step 
closer to the ability to go global.

"Think globally, 
act locally. As we 
were solving each 
problem in front 
of us, we knew, 
at some point, 
we wanted to go 
global. We were 
looking ahead to 
that strategy and 
so the solutions 
we created were 
always taking us 
a step closer to 
that ability to go 
global. 
- Josh Evans
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Cloud-Based Microservices  
Powering BBC iPlayer

Watch online on InfoQ

Each week, British public service 
broadcaster The British Broad-
casting Corporation (BBC) pub-
lishes 10,000 hours of media 
online, available through iPlay-
er. A typical day sees around 10 
million requests to playback vid-
eo. During a nine month period, 
the BBC moved from a perfor-
mance-constrained, monolithic 
system to a microservices archi-
tecture in the cloud, which has 
been able to handle all demands 
for over two years.

iPlayer History
The BBC iPlayer provides on-
line access to content from the 
BBC’s television radio stations, 
including live programming and 
30 days of recent content. Some 
content is exclusively available 
in iPlayer, and BBC Three is now 
only accessible via iPlayer. iPlay-
er is regularly used by 31% of 
adults in the UK, and supports 
over a thousand different devic-
es. The 2012 London Olympics 
required the development of 
new systems, including 24 live, 
online video channels covering 

all events as they occurred. Those 
new systems worked well, but 
the core systems for getting vid-
eo into iPlayer were struggling.

Those core systems were de-
signed about five years earlier, 
with fixed capacity. Adding sup-
port for mobile devices, tablets 
and HD content quickly reached 
the capacity limit. The only way 
to stay within the system’s lim-
itations was to be selective in 
the content made available on-
line, and what to exclude. This 
was most noticeable with HD 

Stephen Godwin is a Senior Technical Architect at the BBC where he is responsible for designing 
the systems that provide audio and video to BBC iPlayer and iPlayer Radio. He joined the BBC 
in 2011 and designed the systems that controlled the 24 live streams the BBC made available 
online for the London 2012 Olympics. Since then he has migrated the systems that power iPlayer 
to a cloud based microservice architecture. Prior to joining the BBC, Godwin spent over a decade 
developing middleware at IBM Hursley Park. 

Adapted from a presentation at QCon London 2016, by Stephen 
Godwin, Senior Technical Architect at the BBC

https://www.infoq.com/presentations/bbc-microservices-aws
http://www.bbc.co.uk
http://www.bbc.co.uk/iplayer
http://www.bbc.co.uk/bbcthree
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KEY TAKEAWAYS
Elastic scaling is good, and can provide technical and business benefits
Common, central error handling and monitoring is a necessity for 
troubleshooting hundreds of microservices
Migrations can be accomplished using only configuration
Moving to a microservices architecture provided an improved customer 
experience, and increased the amount of content available online in iPlayer, 
and made it easier to add new features

content, which was capped at 20 
hours per week.

Reliability was also a major prob-
lem, with any sudden influx of 
video causing the system to fall 
over. Harmonic problems exist-
ed, with issues in downstream 
systems causing work to backup, 
leading to another influx of vid-
eo requests, and another system 
failure. Significant care and at-
tention was necessary to nurse 
the system back to a healthy, 
steady state of operation.

Moving to the Cloud
In January 2013, a decision was 
made to rewrite the system. Re-
cent success building systems in 
AWS had demonstrated the use-
fulness of the elastic model that 
is possible in the cloud. The abili-
ty to add extra storage and com-
puting power, as needed, would 
solve the major limitations of the 
old system.

One small hitch affected the 
timeline for the migration to 
the cloud. The old system had 
been developed in tandem with 
a third party, and the contract 
with that third party was nearing 
its end. A decision to not renew 
the contract would mean the 
new system had to be in place in 

only nine months, by September 
2013. A strong strategic plan was 
clearly necessary, and it began 
with decomposing the system 
into major functional units, then 
creating a solution for each unit.

When looking at a three-step 
process of creating content, pro-
cessing it, and delivering it to 
viewers, two of those were not 
a concern. Broadcast video was 
available from the BBC’s broad-
cast streams, and a CDN for dis-
tributing files to the audience 
was also in place. The big emp-
ty box in the middle, to create 
online video files, had to be de-
veloped from scratch. The plan 
was to start small, and unusually, 
to first solve a slightly different 
problem.

A related system was used for 
publishing short video clips on 
the BBC website, such as behind-
the-scenes clips and trailers for 
popular shows. Like the system 
that powered iPlayer, the clip 
publishing application was hav-
ing trouble, with a video having 
to be resubmitted three or four 
times before it appeared on the 
website. The system had a com-
plex network topology and very 
synchronous connections that 
had a tendency of timing out 
and losing work. The first modi-

fication was to use Amazon’s S3 
storage, instead of writing to on-
site NAS storage.

After gaining experience with S3, 
the team wrote their first micro-
service. This transcoding service 
takes a very large, high quali-
ty video file, and converts it to 
smaller files targeted at specific 
devices. The end result is many 
files to support mobile devices, 
tablets, smart TVs, PCs, etc.

The transcoding process lends 
itself to optimization, when sim-
ilar types of videos are grouped 
together that can share parts of 
the transcoding. This requires 
less CPU power and runs faster, 
and therefore reduces costs. The 
primary function of the transcod-
ing service was to group videos 
into batches, then delegate the 
real video processing to other 
back-end services, which were 
also newly written microservices.

The initial proof-of-concept for 
back-end processing was FF-
mpeg, but in production it was 
replaced with Elemental’s PaaS 
offering, running in AWS. The 
ability to target multiple back-
ends was a useful feature of the 
new system, and was initially 
used to support subtitles, con-
verting subtitle files from various 

https://ffmpeg.org
https://ffmpeg.org
https://www.elemental.com/products/elemental-cloud
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formats. Later, the addition of au-
dio-only content required only 
a small change to the business 
logic to identify an incoming re-
quest as audio-only, and pass it 
to a new audio processing back-
end for transcoding.

Content Distribution
After generating the video files, 
and writing them to S3, the next 
challenge was getting them 
out to the audience. This meant 
getting the files onto the origin, 
then the content distribution 
networks could take the files and 
distribute them to the audience.

The previous transcode service 
also handled the distribution, at 
the end of the transcoding. Sep-
arating the transcoding and dis-
tribution would be the first real 
move towards a proper microser-
vices architecture. Because mul-
tiple origins existed, a complicat-
ed process involved copying files 
into multiple places, verifying 
the distribution, then making 
them available to the audience.

By creating two separate services 
for transcoding and distribution, 
each could be focused on doing 
one thing, and doing it well. This 
led to a more reliable system, and 
happier customers, as the edito-
rial staff could finally upload con-
tent in one attempt.

Integrating with the 
Broadcast Chain
In April 2013, with two major ser-
vices reliably processing video 
clips, the next objective was to 
have full TV programs available 
on iPlayer. This required integrat-
ing with the Broadcast Chain, the 
physical cables in the ground 
and transmission towers spread 
across the country. Several loca-
tions were identified where the 
high quality TV feeds could be 
intercepted.

The bitrates for video are quite 
substantial, at 30Mb/s for each 
HD channel and 10Mb/s for SD. 
A Video Chunker takes a high-res 
stream and writes it to local disks, 
in 80MB chunks, approximately 
20 seconds of HD or 60 seconds 
of SD video. A separate process 
running on the same box then 
takes those 80MB chunks and 
uploads them to S3.

The total amount of data is 
equally substantial: 21 TB per day 
written to S3. 5.2 TB of video files 
are created each day — 2.3 TB for 
SD channels, and 2.9 TB for fewer, 
higher bitrate HD channels. For 
resiliency, two copies of the infra-
structure are run in two separate 
locations, creating four copies of 
the data. Although there were 
some initial concerns about the 
volume of data being continually 
written to S3, performance has 
not been an issue, at least in part 
to the use of (relatively) small 
80MB chunks.

A distributed network of eight 
servers split the processing of 
all the TV channels, with each 
server handling up to 20 threads 
uploading chunks simultane-
ously. The parallel processing 
ensured that any one chunk 
having a problem doesn’t slow 
down the other streams. Having 
a few hundred network connec-
tions into S3 allows Amazon to 
perform load balancing within 
AWS, which worked very well, 
except for one issue. Every few 
weeks, some of the connections 
would suddenly slow down dra-
matically, then basically stopped. 
Restarting the services fixed the 
issue, only to have it reappear 
weeks later.

The nature of the broadcast 
streams meant continuously up-
loading video, all the time. Be-
cause Amazon’s SDK is optimized 
for connection reuse, some con-
nections would stay live for sev-

eral days, or even weeks. If Ama-
zon made networking or server 
changes, it would cause slow-
downs or an effective outage in 
the upload pipeline. The solution 
was provided by Amazon adding 
an optional connection timeout. 
After setting a 15-minute time-
out, causing a connection to be 
closed and reopened every 15 
minutes, no problems have oc-
curred.

The final task for moving the vid-
eo data into S3 is reassembling 
the 80 MB chunks into TV pro-
grams. Each chunk represents 
about 20 seconds of HD data, 
and concatenating two chunks 
together stitches them into 40 
seconds of video, with no no-
ticeable join in between. S3 has 
a feature for creating a file from 
pieces that already exist, so all 
the concatenation happens on 
the S3 side. This allows an hour 
of source video to be made avail-
able in under a minute.

Time Addressable Media 
Store
The system described thus far 
was implemented in July 2013, 
and known as a Time Address-
able Media Store. The main fea-
ture was the ability to query by 
channel and time, for example, 
“BBC One 9 PM to 10 PM, yes-
terday evening,” and the result 
would be the corresponding 
broadcast video. In theory, this 
becomes the world’s best DVR, 
with several days of very high-
res recordings available. The only 
missing piece was knowing the 
start and end times for the TV 
programs coming into the sys-
tem.

Integrating with the Playout Sys-
tems provided the needed data 
for every program. The Playout 
Systems control what is broad-
cast on BBC TV channels at any 
given time, and the associated 
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data feeds include frame-accu-
rate timings for the starts and 
ends of every program being 
broadcast. The combined video 
files and timing data are then 
ready for distribution onto the 
Origin.

Microservices
Although a high-level diagram 
provides a simplified view of the 
major system components, most 
of the actual work is performed 
by about 20 microservices. Ex-
cluding the major integration 
points with the playout feeds and 
final distribution, most services 
are simple, message-driven ser-
vices using Amazon SQS to pro-
vide input and output queues.

The BBC’s primary concern for a 
queueing system was resiliency, 
and SQS has features which met 
this need. However, on rare oc-

casions, SQS can repeat and re-
send a message, and this had to 
be accounted for during system 
design. In most scenarios, this 
was fine, as publishing the same 
thing twice wouldn’t affect the 
final result.

Each microservice is a Java appli-
cation, running inside the JVM, 
on an EC2 instance. The Apache 
Camel framework was used to 
integrate with SQS, and in some 
cases where SQS support need-
ed to be improved, those chang-
es have been pushed back to the 
Camel open source project.

The codebase for each service is 
typically in a separate SVN repos-
itory. While not done intentional-
ly, analysis of these independent 
repos revealed each service con-
sists of roughly 600 Java state-
ments. This doesn’t mean all mi-
croservices should be that size, 

but for the BBC iPlayer, it seems 
to be the right size for their pur-
poses.

This also aligns well with the fact 
that each service only has one or 
two developers working on it at a 
time. More than a few developers 
usually indicates that a service is 
too big, or too many competing 
changes are occurring at once. 
Small services, with a very limit-
ed set of functionality, allows for 
very focused development effort 
on small changes.

EC2 Implementation
In most cases, at least three EC2 
instances host each microser-
vice. A Competing Consumers 
Pattern is used to read messag-
es from the input queue and 
put them on the output queue. 
When an instance of the service 
reads a message off the input 
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queue, it is locked and hidden 
from other instances of the ser-
vice. If, after a 30 second timeout, 
the instance hasn’t responded to 
SQS to renew, delete or mark the 
message as processed, the mes-
sage becomes visible to the oth-
er instances of the service.

This pattern for reading from the 
queue improves both scalability 
and resiliency. If additional work-
ers are needed, the Auto Scaling 
group can easily be modified to 
have a minimum of 30 instances, 
instead of three, resulting in mes-
sages being processed 10 times 
as fast. Alternatively, if one work-
er fails for any reason, the mes-
sage will reappear on the queue 
after 30 seconds, and the service 
would be restarted and reappear 
a few minutes later. Chaos Mon-
key is used to randomly remove 
services and validate the resilien-
cy of the system.

Furthermore, the error handling 
within Apache Camel aligns well 
with this system. When any un-
expected error is encountered, it 
simply bubbles up to the top of 
Camel, and is let go, releasing the 
message back to the queue. This 
creates a retryer automatically 
built into the system.

In the case where a problematic 
message could cause repeat-
ed retries to fail, it needs to be 
identified as a “poisoned mes-
sage” and handled appropriately. 

Each SQS message includes an 
Approximate Retry Count head-
er indicating the number of at-
tempts to process the message. 
At the beginning of each, each 
service is code to examine the 
header, and move messages with 
too many retries to a dead let-
ter queue. Human review of the 
dead letter queue allows analysis 
to identify any significant prob-
lems. This functionality has now 
been implemented within SQS as 
a Redrive Policy.

Monitoring
In addition to the dead letter 
queue, basic monitoring is con-
figured on the EC2 instances 
hosting the services. Further 
monitoring is performed regard-
ing the queues, with a focus on 
the depths of the queues. As a 
general rule, an empty queue 
is a happy queue, so alarms are 
configured when the number 
of messages in a single queue 
gets too high, with the threshold 
based on the nature of the ser-
vice processing the queue. When 
a threshold is reached, it usually 
means something is wrong with 
the system, and processing has 
completely stopped, or there is 
simply a need to scale out to han-
dle the load.

Along with monitoring, a consis-
tent approach is used for logging 
and auditing the process within 
a service. Most of the auditing 

messages are business focused. 
These messages are sent via SNS 
to a log processing system, in this 
case Splunk, to provide a central-
ized view of what is happening 
across all the microservices. Each 
piece of work, for example, the 
1:00 news ending at 1:30, is giv-
en a unique ID as it enters the 
system, and follows that work 
through the entire iPlayer work-
flow. This makes it very easy to 
see all the related pieces of work 
and debug any problems in the 
system.

Going Live
By August 2013, a complete 
system existed, including good 
approaches for operations and 
monitoring. The single major 
step remaining was actually go-
ing live. The goal was to avoid a 
“big bang” approach, switching 
entirely from the old system to 
the new, all at once. If that oc-
curred, any problems or missed 
functionality could be cata-
strophic, and would be very pub-
licly visible.

Achieving a gradual rollout was 
possible because of design deci-
sions made very early in the proj-
ect. Configuration options en-
abled the selection of what the 
system would handle, including 
which bits of videos to process, 
which devices to support, which 
TV stations to work with, down to 
the individual program level.

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/SQSDeadLetterQueue.html
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One interesting trend for the 
BBC iPlayer is a daily spike in in-
coming transcode requests, at 
7:00 PM every weekday. From 
6:30 to 7:00, regional news pro-
grams change BBC One from 
one TV channel to effectively 19 
separate TV channels, all need-
ing to be processed by iPlayer.

Resource constraints in the old 
system meant it took about 16 
hours to get the last of the news 
programs out. Since news pro-
grams are usually taken down 
after 24 hours, this system was 
not terribly useful. Improving 
this scenario was the first test of 
the new system. Because the in-
coming load could be anticipat-
ed, the new, elastic system was 
scheduled to scale out every 
day, ready to handle the news 
programs when they arrived. 
The end result was reducing 
the 16-hour process down to 30 
minutes.

With the news serving as a good 
test case for a few weeks, confi-
dence in the system improved, 
and new devices and channels 
were gradually added. After sev-
eral weeks successfully process-
ing all the other channels the fi-
nal move was the highest profile 
channel, BBC One.

After Go Live
When the September 2013 
deadline arrived, the new sys-
tem had been successfully built 
and implemented, completely 
replacing the old system. The 
fact that iPlayer was still work-
ing, and still had video, and not 
a test pattern, could be consid-
ered a major success unto it-
self. But the audience received 
added benefits because of the 
improved system. Previously, 
limited system capacity meant 
deciding which content would 
be made available online. Now, 
if the BBC had rights to the con-

tent, it could be, and usually 
was, published to iPlayer. This 
led to a doubling in the amount 
of content in iPlayer, and HD 
content increased by 700%. A 
few months after launch, the 
elastic capacity of the cloud was 
further leveraged to increase 
video availability from seven 
days to 30 days.

Developers also benefitted from 
the new platform. Changes can 
be deployed in 15 minutes, us-
ing immutable AMIs. A relatively 
small team, about 25 develop-
ers, performs 202 deployments 
per week, 34 of those to live. An 
average of more than one pro-
duction deployment per devel-
oper, per week, comes with re-
sponsibility to perform testing 
and make reasonable changes. 
Developers are expected to 
spend 60% of their time writing 
tests. Working with very small 
changes both enables and re-
quires frequent deployments.

An outside-in BDD/TDD ap-
proach starts with writing the 
acceptance test first. Although 
the services are written in Java, 
all tests are written in Ruby. This 
avoids the temptation for devel-
opers to reuse code between 
the test and implementation, 
such as a serialization library, 
which can lead to symmetric 
bugs which pass all tests, but fail 
in real use.

Even with considerable testing, 
issues can still appear. For ex-
ample, when a two-line change 
was deployed, it included a se-
curity update, which led to the 
service failing every three hours. 
Using immutable AMIs, and 
making small changes, meant 
the previous version could safe-
ly and quickly be deployed until 
the new version could be tested 
and fixed, including the security 
patch. Because the deployment 
process noted all changes that 

occurred, identifying the new 
JVM as the root cause was much 
easier than with the previous 
monolith system.

Advanced Features
The new system, including the 
deployment process, allowed 
new features to be added quick-
ly. The first major addition was 
integrating the Simulcast Sys-
tem for showing live copies of 
the BBC One and BBC Two TV 
channels into the microservices 
architecture. The Live Restart 
system was also migrated at the 
same time, allowing a viewer to 
jump back to the beginning of a 
live TV program while still being 
broadcast. By collecting the vid-
eo as it goes past the Simulcast 
System, and writing it to disk, it 
allows live events to be made 
available within 10 minutes as a 
catch-up piece of content.

For the first time, a single sys-
tem can now be used for both 
TV and radio content, instead 
of two separate monoliths. Mi-
croservices were a key factor in 
enabling this shared platform. A 
single monolith, with compet-
ing business logic, would have 
been a daunting system to build 
and maintain. Microservices al-
low clean separation of business 
logic, as well as reuse of code 
that can be common to both TV 
and radio. 60 different BBC radio 
stations, most with both inter-
national and domestic variants, 
are a major contributor to the 
10,000 hours of content pub-
lished every week.

Content from S4C, a public-ser-
vice broadcaster for Welsh-lan-
guage television in the UK, was 
also added to iPlayer. Small 
adapters were written to collect 
the content, and were connect-
ed to the existing microservices. 
S4C content appears alongside 
other channels in iPlayer.
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Recently, BBC Worldwide, the 
commercial arm of the BBC, 
launched the BBC Store to make 
videos available to purchase 
and own online. Providing the 
transcoding for BBC Store, was 
only possible because of the 
new architecture. Additional 
capacity was required, incur-
ring additional costs. The pric-
ing model in AWS meant the 
expenses are easily quantified 
and communicated to what is 
effectively a third party for cost 
sharing.

Another change to iPlayer was 
moving from Adobe Flash to-
wards HTML5. Previously, the 
CDNs would handle final vid-
eo packaging, but this change 
meant the packaging needed to 
be added to the tail end of the 
transcoding and distribution 
service. The migration was again 
made in a gradual manner, with 
config options specifying devic-
es and channels to utilize the 
new system. The old technique 
is still running, to accommodate 
devices which do not support 
the new video format, another 
benefit of using a microservice 
architecture.

Problems and Concerns
After a couple of years, some 
services grew too big, to around 
1200-1400 Java statements, 
twice the average size. These 
were broken down into several 
small parts, making them much 
more manageable and easier to 
maintain.

Using AWS EU-West-1 is point 
of concern, since it is located in 
Dublin, across the Irish Sea from 
most of the BBC. When prob-
lems with network connectivi-
ty between the UK and Ireland 
caused an outage in Simulcast, 
it led to a second copy of the 
simulcast infrastructure run-
ning in a BBC data center, with 

a 50/50 split between the two 
systems. The long-term plan is 
to utilize a London AWS, when it 
is ready, and eliminate the need 
to maintain two different styles 
of data centers.

An interesting side effect of be-
ing able to move fast is some-
times being left behind. One 
planned change was delayed 
six months; by the time it was 
implemented, it was no longer 
relevant. The lesson is to ex-
pect the system to constantly 
change, and if significant time 
has elapsed, check the design 
again when finally working on a 
new feature.

Lessons Learned
Elastic scaling is good, and lin-
ear or better scaling is great. 
Designing the system around 
the idea of elastic scale, and the 
corresponding pricing model, 
meant it was easy to present op-
tions for adding system capacity 
to business owners to decide if 
the benefits justified the cost. It 
also led to reliable pipelines of 
microservices, breaking down 
complex problems into small 
pieces that are easy to change 
and redeploy.

A common approach to error 
handling and monitoring, in-
cluding the audit event system 
created at the very beginning, 
proved invaluable. With over 
100 microservices spread across 
300 instances, troubleshooting 
the system requires a central 
place to start looking for prob-
lems.

Migration can be done using 
only configuration, but it must 
be built in early. This allows 
the behavior of the system to 
change in small and large ways, 
up to adding major new func-
tionality purely through config.

The BBC was able to move iPlay-
er onto AWS under significant 
time pressure. This massively 
increased the amount of con-
tent that can be made available 
online. The new system made it 
easier to add new features. Fi-
nally, using a microservice archi-
tecture provided a seamless au-
dience experience, even while 
major changes were being 
made throughout the system.
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Scaling Uber to 1000 Services

Watch online on InfoQ

Uber has learned many lessons 
from dealing with incredible 
rates of growth in customer de-
mand, company size, and the 
technology it relies on. In just 
two years, their platform scaled 
up from just 20 services to over 
1,200, and was accompanied 
by a 10x growth in engineering 
headcount. Uber has the benefit 
of being a relatively new compa-
ny, and is not burdened by lega-
cy systems. Their architecture is, 
and has always been, microser-
vices, which allows a strong per-
spective on all the benefits and 

shortcomings of a microservices 
architecture.

Benefits and Costs of 
Microservices
Agility is the major benefit real-
ized by microservices. Compo-
nents are isolated, and can be re-
leased independently, allowing 
for rapid changes and growth 
of the overall system. This, com-
bined with a short ramp-up time, 
is crucially important when peo-
ple are being added to engineer-
ing teams as rapidly as new ser-
vices are being created.

Microservices also tend to be 
more reliable, as teams have 
more personal accountability. 
They own the uptime, availabili-
ty and release schedules, and are 
therefore are more motivated to 
build in reliability as a feature. 
A closely correlated benefit of 
microservices is being able to 
choose the best tool for the job. 
Since there is no easy definition 
for what is “best” in each situa-
tion, a good understanding of 
the trade-offs is key. However, 
these trade-offs can lead to some 
of the less obvious costs of mi-
croservices.

Matt Ranney is Chief Systems Architect at Uber, where he’s helping build and scale everything 
he can. Previously, Ranney was a founder and CTO of Voxer, probably the largest and busiest 
deployment of Node.js.

Adapted from a presentation by Matt Ranney, Chief Systems Architect 
at Uber, at QCon New York 2016

https://www.infoq.com/presentations/uber-scalability-services
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InfoQ recommends
The benefits of microservices 
must be weighed against the 
costs, and the foremost concern 
is complexity. Instead of a simple 
system, the result is a distribut-
ed system which is complicated, 
hard to understand, and hard to 
debug. When outages occur, they 
are more difficult to troubleshoot, 
sometimes not making it clear 
where to start to fix the problem.

Choosing microservices means 
accepting increased operational 
complexity to achieve improved 
short-term developer velocity. 
This is probably a reasonable 
trade-off, especially for a compa-
ny with exponential growth, but 
be aware that the level of opera-
tional complexity may be surpris-
ing.

One architectural pattern is to cre-
ate immutable microservices, or 
an append-only microservice ar-
chitecture. In other words, never 
turn anything off. If a system com-
ponent is static and does not re-
quire modifications after becom-
ing stable, why would you want 
to change it? The Uber service is 
most reliable on the weekends 
when engineers are not making 
changes, so sometimes increased 
complexity can actually result in 
increased stability. A hybrid solu-
tion is to consider making ser-

vices immutable after they reach 
a certain age and maturity. Again, 
the architect needs to consider 
the cost-benefit analysis of leav-
ing the old services running ver-
sus the cost to change them.

Less Obvious Costs
When designing and building a 
system, keep in mind that every-
thing is a trade-off, even if it is 
an unconscious decision. This is 
more true with big microservices 
deployments, and it surfaces in 
subtle ways.

Optimization for developer ve-
locity can lead to a temptation to 

build around problems instead 
of fixing the issue. If a dependent 
service doesn’t work properly, 
why not just build a new, bet-
ter service? Getting the devel-
oper unblocked, but adding to 
the complexity of the system is 
already the accepted trade-off. 
However, sometimes this decision 
is based on politics and relation-
ships, rather than technology and 
algorithms.

Politics can surface in the form of 
developers being very produc-
tive, cranking out new services, 
just to avoid having hard conver-
sations. It is important to identify 
and guard against this behavior, 

KEY TAKEAWAYS
Everything is a trade-off. Whenever possible, make decisions intentionally, 
rather than just accept them by default.
The major benefits of microservices are agility and reliability, but these must 
be balanced against increased complexity.
Microservices also have less obvious costs, including additional latency due 
to JSON and RPC calls.
The operational complexity of microservices must be managed using tools for 
tracing, logging and testing.

The InfoQ Podcast 
Uber's Chief Systems Architect on 
their Architecture and Rapid Growth

https://www.infoq.com/articles/podcast-matt-ranney
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as it has an unexpected side-ef-
fect of being detrimental to the 
business, the entire development 
team, and a developer’s career de-
velopment. Avoiding hard conver-
sations directly correlates to peo-
ple to keeping personal biases. It 
is tempting to continue to do the 
same, comfortable work, rather 
than being forced to learn some-
thing new.

Languages
For Uber, this trend manifested 
through language specialization. 
Initially, Uber used Node.js and Py-
thon, and has been transitioning 
to new services written in Go and 
Java. On the surface, having mul-
tiple languages doesn’t seem like 
an issue, because sharing code 
shouldn’t be a concern given the 
ease of writing another service 
and talking to it over the network. 
However, every major system will 
always have some common, fun-
damental behavior that needs to 
be shared across components, re-
sulting in expensive and difficult 
duplication of effort.

Moving among teams becomes 
more challenging when there is 
a greater chance that the other 
team uses a different language. 
The culture also becomes frag-
mented, with distinctions such as 
“Java people” which should not 
exist among a unified, cohesive 
team.

Remote Procedure Calls
Microservices rely on using Re-
mote Procedure Calls (RPCs), trad-
ing the easy, fast, and intuitive 
world of inline function calls with 
a complicated, hard to debug, 
and sometimes impossible to 
understand environment where 
everything travels over the net-
work. The most popular protocol 
for microservices is HTTP, and it 
certainly has a lot of benefits and 
support from various microservice 
tools and frameworks. However, 

widespread use of HTTP quickly 
showcases its intent as a protocol 
for communicating over the open 
internet, from browsers to web 
servers. Using HTTP inside the 
data center add unnecessary com-
plexity. Instead of handling a sim-
ple function call with arguments, 
HTTP brings with it query strings 
and headers and response codes 
-- all features which don’t benefit 
microservices.

JSON
Along with HTTP usually comes 
messages transmitted using JSON. 
Like HTTP, JSON has some ease-of-
use benefits, including being hu-
man-readable, and being almost 
universally supported. However, 
the lack of a schema and strong 
typing means extra care is nec-
essary when dealing with multi-
ple languages. JSON is also slow, 
which could be said of any extra 
encoding and decoding process. 
This is compounded by the fact 
that RPCs will always be slower 
than local function calls.

An architecture of 100% micros-
ervices, using HTTP and JSON for 
RPCs, requires more computing 
power just to make the system 
work, compared to a monolithic 
architecture.

Repos
Source control for microservices 
brings with it yet another decision: 
whether to have one, very large 
monorepo, or to have hundreds of 
very small repositories. The trade-
off here is between the ability to 
make cross-cutting changes (and 
corresponding rollbacks) versus 
flexibility and faster checkouts. 
While Uber has gone down the 
path of thousands of repos, and 
the culture accepts the process, 
the recommendation is to make 
an explicit decision, rather than 
watching the process evolve or-
ganically.

Operational Complexity
Operational complexity is the core 
problem facing a large microser-
vices implementation. Techniques 
used to understand how one big 
thing is broken may not be useful 
when the system is composed of 
hundreds of small parts. After all, 
the effort to create a system built 
of microservices, where pieces are 
isolated and unaware of the imple-
mentation details of other compo-
nents, it would be really useful to 
have the exact opposite and be 
able to view the system as if it was 
just one big, integrated monolith.

Performance needs to be mea-
sured and understood at the sys-
tem level, which seems obvious, 
but is often overlooked by micro-
services. There is a temptation to 
think that, since a service is just 
doing one, small task, and it’s 
relatively fast, performance isn’t 
important. This isn’t an advoca-
tion for premature optimization. 
Rather, standard monitoring and 
dashboards need to be defined, 
implemented consistently for all 
languages, and provided auto-
matically for new services. Teams 
can augment and add addition-
al monitoring as they see fit, but 
standardization allows metrics to 
be consistently observed and ag-
gregated at various levels within 
the system.

Being able to manage for perfor-
mance is much easier if built in 
early, rather than bolted on later. 
Every new service should have an 
SLA, including acceptable levels 
for both availability and perfor-
mance. Setting the initial perfor-
mance threshold very high means 
it can be adjusted later, if needed. 
This is much easier to do than real-
izing there is no knob to adjust for 
performance, and having to add it 
later.

Good performance is not required, 
but known is.
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Fan-out and Tracing
Identifying performance prob-
lems with microservices requires 
a good understanding of how fan-
out affects the net performance 
of the system. The overall latency 
of any given request is at least as 
large as the latency of the slowest 
component involved in the fan-
out. Simply stated, before the user 
can get their response, they have 
to at least wait for the slowest 
thing to complete. Even if a slow 
call only occurs rarely, the effect of 
the fan-out can magnify the num-
ber of slow requests and custom-
ers affected.

Tracing is essential for understand-
ing system performance through 
fan-out, and various tools exist 
to accomplish tracing, from log 
stitching to Zipkin. For example, 
one call may always be really fast, 
but if it needs to be called hun-
dreds of times, the net result of 
all those calls may be slower than 
desired. A batch method may be 
a good solution, even if it was not 
originally thought to be required. 
Tracing provides the insight into 
how the service was being used 
in production. Without tracing, it 
may be possible to find the root 
cause, but tracing certainly makes 
the process easier. 

Although tracing is the crucial 
component for understanding 
fan-out performance, the over-
head to create tracing data can 
exceed the core workload. For a 
production workloads, sampling 
just 1% or less of requests will pro-
vide enough data to satisfy most 
analysis needs.

Tracing becomes more difficult 
when multiple languages are in-
volved, as there is no simple solu-
tion for cross-language context 
propagation. One technique is 
to have each service pass along 
properties on the context of the 
incoming request along to the 
outgoing request, with the un-

derstanding that, even if a given 
property is not applicable to your 
service, the properties will all be 
useful somewhere in the chain.

Logging
Similar to tracing is a need for con-
sistent, structured logging. It can 
be tempting for individual devel-
opers and teams to add logging 
as they see fit. However, like the 
need for common dashboards, all 
services must generate logs which 
can easily be processed by off-the-
shelf or custom log aggregation 
tools. Keep in mind these tools are 
the primary consumers of logs, 
not the humans, who first need a 
searchable index created.

Unfortunately, the costs associ-
ated with all this logging can be-
come substantial, as the comput-
ing resources grow to handle the 
log processing load. Sometimes 
log messages may need to be 
dropped or an SLA will be missed. 
If possible, being able to tie the 
costs of heavy logging back to in-
dividual services can raise aware-
ness among teams, and hopefully 
reduce extraneous logging.

Load Testing and Failure 
Testing
Planning for testing needs early 
can have significant long-term 
benefits for system performance 
as well as improving culture. If 
load testing in production is nec-
essary, then processes need to 
exist to allow test traffic to create 
measurable load, while also being 
excluded from telemetry reports. 
Retrofitting all services to handle 
test traffic is extremely compli-
cated and expensive compared to 
planning and building it in early.

Similarly, failure testing can be 
very beneficial to understand how 
the system responds to various 
failure modes. Not surprisingly, 
developers are reluctant to having 
their working software deliberate-

ly broken. This is less of a concern 
if failure testing was just another 
feature that is automatically in-
cluded with every service.

Trade-offs are 
Everywhere
One of the most common trade-
offs in software is build versus 
buy. It can be tempting to want 
to build really cool infrastructure 
projects that have a major impact 
on the company. Unfortunately, 
really useful platforms and infra-
structure projects often become 
commoditized, either through 
open source or implemented as 
a service by a cloud provider. This 
can eventually become a disad-
vantage to own and support. Giv-
en the choice, most businesses 
would prefer to spend time and 
money on development and sup-
port of features that are market 
differentiators.

A final cautionary note regarding 
services is they will allow peo-
ple to play politics. In this sense, 
politics are defined simply as any 
time an individual’s priorities are 
valued above the team, or the 
team is placed above the compa-
ny. Services allow a level of insula-
tion that can make it easy to play 
politics along this spectrum. The 
tracing, logging and monitoring 
patterns which allow an under-
standing of the system as a whole, 
can serve as guidance for how to 
deal with political challenges that 
arise.

The fundamental truth is that ev-
erything is a trade-off. Sometimes, 
the trade-offs are not obvious, 
which can lead to decisions just 
being accepted by default. When-
ever possible, identify and analyze 
the trade-offs, and make them in-
tentionally.

https://github.com/openzipkin/zipkin
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The Architecture That  
Helps Stripe Move Faster

Watch online on InfoQ

Stripe has a proven history of 
being able to make big changes 
successfully. Unlike other start-
ups, they cannot simply “move 
fast and break things,” as Mark 
Zuckerberg famously described 
Facebook’s practices. Stripe ac-
cepts payments made through 
online applications and by busi-
nesses, including Lyft, Kickstart-
er and Twitter. Although around 
20% of Americans used Stripe 
in the past year, most were un-
aware of Stripe’s involvement. 
Processing billions of dollars in 
payments means a higher expec-
tation of reliability and stability 

than a typical startup of their 
size.

The business environment Stripe 
is in requires a careful balancing 
act of two different concerns. 
Being popular in a crowded, 
competitive industry means con-
tinually innovating and trying 
to improve the product and ser-
vice they provide. On the other 
hand, it is equally important to 
provide a stable, reliable service, 
which usually means making 
as few changes as possible. This 
transition towards more stability 
is common to every successful 

company, but for some it occurs 
earlier than others.

Because stability is a fundamen-
tal need for Stripe, they tend 
to have a bias towards making 
slow, incremental changes. The 
big projects which have been 
successful, such as migrating 
infrastructure, all followed a de-
liberate plan. Engineers can be 
resistant to this approach, often 
thinking they can always write 
more code to solve problems af-
ter they arise. However, as three 
successful projects demonstrate, 
many factors contribute to Stripe 

Evan Broder has worked on systems and infrastructure at Stripe for four years, helping 
them stay online through several orders of magnitude of growth. Previously, he worked on 
virtualization management and the Linux desktop at MokaFive and helped build XVM at MIT, 
one of the earliest cloud computing environments.

Adapted from a presentation at QCon New York 2016, by Evan Broder, 
Principal Engineer at Stripe

https://www.infoq.com/presentations/stripe-api-pci
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KEY TAKEAWAYS
Find points of high leverage to solve a broad problem instead of trying to solve 
many small problems.
Have a plan to test early and test often.
Work incrementally in small steps and build on top of established layers.
For Stripe, incremental changes are the most successful, cause the fewest 
problems and are the most effective way to make big changes.

being able to move fast, while 
making big, safe changes.

Evolution of the Stripe 
API
Several approaches help Stripe 
change the API in incremental 
ways, providing continual im-
provement, while not impacting 
the stability for existing users. 
Over time, little modifications 
add up to big changes. If a cur-
rent consumer were to look at the 
API from five years ago, it would 
be only vaguely recognizable. 
For example, the old technique 
was to have a parameter to spec-
ify the API method you wanted, 
which was not very RESTful, and 
has since been eliminated. Oth-
er changes have been made to 
support new products, features, 
and methods of payment, such 
as bitcoin.

Some updates to the API were 
for purely practical reasons, to 
ensure the Stripe platform could 
scale. Several features in the API 
were accidentally quadratic, 
which works fine with a relatively 
small user base, but can become 
a major problem as the product 
is adopted and demand grows. 
One sign of a healthy develop-
ment environment is the ability 
to look back, recognize some 

past design decisions were not 
correct, and be able to fix them.

Whenever possible, API changes 
were made in a backwards com-
patible way. Relatively straight-
forward examples include add-
ing new fields or new methods, 
or adding new parameters as 
optional. These are backwards 
compatible because there is no 
expectation for the users’ code 
to change. However, the more 
interesting idea is how to handle 
backwards incompatible chang-
es.

Engineering Values
Before going into the details, it’s 
useful to understand Stripe’s en-
gineering values, as they high-
light what is most important to 
the organization. Stripe exists 
fundamentally to empower de-
velopers. They want to make de-
velopers more effective by solv-
ing broad classes of problems, 
allowing the developers to focus 
on the things that differentiate 
their business.

This philosophy is manifested 
in two significant ways. First, it 
should be as easy as possible to 
start writing code using Stripe. 
The process to sign up for an 
account and start writing a few 

lines of code is very easy. Sec-
ond, once a developer writes a 
line of code using Stripe, that 
code should never have to be 
changed. Business requirements 
may require making modifica-
tions, but nothing Stripe does 
should break code running in 
production.

Backwards Incompatibility
While Stripe has made some 
complex changes to the API, a 
simple example works well to 
describe the process of making a 
backwards incompatible change. 
Historically, when details about 
a credit card are retrieved from 
Stripe, one of the attributes was 
named type, and could be Visa, 
MasterCard, American Express, 
etc. Over time, the team realized 
type was a really bad name for a 
field. (Naming Tip: never use the 
name type in your API. Find a bet-
ter name.) In this case, the name 
brand more accurately describes 
the data. The challenge was to 
make an improvement to the API 
without having a negative im-
pact on current users.

Being able to provide different 
behavior to different users re-
quired a concept called gates. 
Facebook has used this pattern 
by using a piece of infrastructure 



Architectures you’ve always wondered about  // eMag Issue 46 - Nov 2016 23

called Gatekeeper to handle par-
tial rollouts in different locations 
and other situations. Stripe’s 
solution is similar, but the key dif-
ference is in controlling behavior 
for a specific user.

Each Stripe user has a list of en-
abled gates. Each gate enables 
some sort of legacy behavior. 
When new behavior is desired, a 
new name is chosen for the gate. 
That gate is added to every user 
in the database, so all the exist-
ing users now see the old func-
tionality. Code in the API checks 
for the existence of the gate, and 
gives the old behavior if the gate 
is present.

In the field renaming example, 
the API grabs the brand field for 
old users and sets it to the type 
field. New users, who don’t have 
the gate, will only ever see the 
brand field. This is a fairly simple 
example, which only affects the 
inputs and outputs, but does not 
alter the actual processing with-
in the API. If the API logic has to 
know how to handle different 
types of requests, it can quickly 

become a tangled mess of spa-
ghetti code.

Avoiding the mess within the 
core API code meant adding 
translation layers at the begin-
ning and end of each call to ex-
plicitly handle the complexity. 
When a request arrives, the gate 
check for the user is performed, 
and parameters are adjusted so 
it looks like a modern request. 
The core code then only needs to 
handle requests that look like the 
current API. A similar, reverse pro-
cess occurs to send the response 
back to the user, converting from 
the modern structure into what 
the user expects.

While the translation adapters 
can become arbitrarily complex, 
the complexity is very clean-
ly contained. The core API only 
needs to know about the cur-
rent version of the API, making 
it much easier to test and greatly 
reducing the maintenance cost 
for introducing new gates. This 
effectively solved the first prob-
lem, by allowing incremental 
changes in the API. The second 

challenge was hiding complexity 
from the users, which came with 
additional issues.

Hiding Complexity
Keeping the API simple, at least 
from a user’s perspective, relied 
on an abstraction. Like most ab-
stractions, it was fundamentally 
leaky. Often, the documentation 
didn’t line up with the either the 
expected or current functional-
ity. When a user learned of and 
wanted to start using new func-
tionality, they had to submit a 
request, then have their account 
modified with the new gates.

Unfortunately, adding new gates 
made it progressively harder to 
test interactions. This is a classic 
case of exponential growth, with 
two gates having four combina-
tions, three gates having eight 
combinations, and so forth. The 
incremental changes were actu-
ally becoming quite substantial, 
with intermingled complexity. 
Eventually version numbers were 
introduced to help manage com-
plexity.
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While versioning is certainly not 
revolutionary, Stripe initially 
thought they didn’t need version 
numbers in their API. Hindsight 
proved that assumption wrong. 
Stripe’s version numbers are 
based on dates, and correspond 
to a named set of gates. This 
meant a semantic naming could 
be used to determine if a specif-
ic version does or does not have 
corresponding behavior. It also 
meant a linear, rather than expo-
nential, approach for handling 
backwards compatibility.

Stripe considered various op-
tions for handling version num-
bers, such as including the ver-
sion in the URL. Stripe’s core value 
of trying to make developers’ 
lives easier led them to a differ-
ent approach. When a new user 
registers for a Stripe account, 
the current version of the API is 
looked up, and associated with 
the user’s account. From that 
point on, any requests coming in 
from that account are treated as 
being on the version from when 
the account was created. At any 
time, a developer can get a list 
of the differences between their 
version and the current version. 
The developer can then chose to 
upgrade to the latest version at 
any time.

This process meant the constant 
evolution of the API was trans-
parent to users, and everything 
just works. It also puts the deci-
sion to utilize new features com-
pletely in the control of a user, 
when they are ready to make 
a change. On top of the 70 ver-
sions currently supported, a new 
version is released about once 
per month, with very low main-
tenance cost.

PCI Compliance
The API story demonstrates how 
Stripe makes incremental chang-
es in their product offering. They 

use a similar approach to making 
changes to internal infrastruc-
ture. One of these was a rewrite 
of PCI sensitive infrastructure 
from Ruby to Go. A complete 
rewrite may not sound like an 
incremental approach, but the 
team focused their work on small 
pieces and was able to roll out 
the changes more effectively and 
with lower impact.

The biggest challenge with PCI 
compliance is that anything that 
touches credit card details is in 
scope for PCI. Any infrastructure 
that handles credit card data has 
to be PCI compliant, which can 
be burdensome and an impedi-
ment to development and mov-
ing quickly. In general, one of 
the main goals of going through 
the PCI compliance process is to 
make as few things in scope for 
PCI as possible.

Tokenization
Although many components do 
not need the actual card number, 
it can be useful to recognize a 
specific card as one that has been 
through the system before. One 
such case is fraud processing, 
and being able to spot multiple 
transactions on a single card. To-
kenization is the common tech-
nique of taking something that 
is valuable, in this case, a credit 
card number, and replacing it 
with something that has limited 
value, and only within the con-
text of the system.

Stripe’s system for tokenization is 
called Apiori. (Naming Tip: don’t 
get too clever.) Apiori is a thin 
veneer on top of api.stripe.com, 
and all API calls first pass through 
Apiori. The tokenization system 
looks for PCI-sensitive elements 
and replaces them with a corre-
sponding token identifying the 
cardholder data.

Apiori deliberately knows almost 
nothing about requests, just 
where to find the PCI-sensitive 
information. Other than han-
dling PCI data, it’s basically just 
an HTTP proxy. This should have 
meant a rewrite would be fairly 
straightforward, since the scope 
was so limited.

Stripe is primarily a Ruby shop, 
and the PCI code was written in 
Ruby as part of the initial launch 
in 2010. The process of making 
a database call to fetch the to-
ken and other steps involved a 
lot of I/O operations. The Event-
Machine library was chosen to 
help handle asynchronous I/O. 
While this system worked well for 
four years, it became difficult to 
maintain and understand. Load 
tests to plan for future growth re-
vealed Apiori was becoming the 
bottleneck.

Because the service is narrow-
ly-scoped, horizontal scaling was 
used, but eventually became 
cost-prohibitive. The decision 
was made to rewrite Apiori, and 
to rewrite it using Go. Stripe had 
already been looking at Go as a 
future development language, 
especially for low-level infra-
structure problems. Improved 
concurrency and performance 
were some of the goals which 
contributed to the choice of Go.

The initial development in Go 
took about a month, and the 
team believed they had achieved 
feature compatibility with the 
old Ruby code. After internal 
testing and code reviews, it was 
ready to be rolled out. As with 
other changes, the desire was to 
proceed slowly and incremental-
ly. Using a new server with the 
Go code, and an extremely low 
setting on the load balancer, 10 
requests were passed through 
the new system, then it was shut 
off. Detailed analysis of the logs 
revealed some problems oc-
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Not all of the problems encoun-
tered were encoding problems, 
but they serve as a good exam-
ple of unexpected functionality 
built into the old system which 
now needed to be understood 
then written in Go. In some cas-
es, Go had internal behavior that 
disagreed with the RFC, which 
also had to be accounted for. The 
main lesson learned came down 
to Postel’s Law, “Be conservative 
in what you do, be liberal in what 
you accept from others.”

The team’s understanding of the 
existing behavior was always lim-
ited, but learning new subtleties 
did not necessarily lead to being 
able to write tests to simulate the 
full variety of requests coming 
into the system. Go’s HTTP library 
does not generate mal-formed 
requests, resulting in very nar-
row testing of only well-formed 
input. Stripe solved this problem 
with a technique they named 
The Zoo.

The Zoo
The Zoo is just a fun name for ex-
ample-based testing. Every time 
a new exotic request is seen, it is 
added to The Zoo. The request 
and response are captured, and 
the expected behavior of the API 

can be determined for a given 
input. Tests were created to gain 
confidence that every time some-
thing unexpected was seen, it 
became a new animal for The 
Zoo. This also benefitted from 
the ability to send a very small 
number of requests through the 
system for analysis purposes.

For two months, more and more 
code was incrementally rolled 
out. First, ten requests over a 
minute, then 1% of requests for 
an hour, then 1% of all requests, 
all during normal working 
hours. When the team had con-
fidence that enough bugs had 
been identified and squashed, 
they were able to send all traffic 
through the Go code, with no 
major incidents.

The primary goal of increas-
ing performance was clearly 
achieved by migrating to Go. 
While all Go requests processed 
in under 150 microseconds, the 
Ruby infrastructure had a min-
imum latency of 500 microsec-
onds, meaning half a millisecond 
elapsed before anything oc-
curred. The new code has been 
running in production for about 
two years, and is much more 
maintainable. The Go routine 
model makes it much easier to 

reason about and add new fea-
tures.

The wholesale rewrite of any sys-
tem can be challenging. The nar-
row scope of Apiori was a ben-
efit, but the major factor in the 
success of the rewrite was a very 
slow, deliberate and incremental 
rollout to production. The code 
took only one month to write, 
and two months to test and val-
idate. That extra time going slow 
early has meant years of stability 
on the new system.

The Oregon Trail
The final Stripe case study cov-
ers the migration from one AWS 
region to another, effectively a 
complete move between data 
centers. It was probably the most 
complex infrastructure project in 
Stripe’s history. Again, incremen-
tal work, building progressively 
closer to the end goal made the 
migration successful.

Like many companies, Stripe op-
erates within multiple availability 
zones within a region. In 2010, 
when Stripe was first using AWS, 
the only two AWS regions in the 
US were on the East Coast and 
the West Coast. Stripe chose the 
West Coast because most of their 
early adopters were Bay Area 
companies.

Only ten months after being 
set up in the AWS data centers 
in Northern California, Amazon 
opened a new region in Oregon. 
Running infrastructure in Ore-
gon is about 10% cheaper than 
in California, and there is much 
more room for expansion. It also 
became clear that Amazon was 
focusing West Coast AWS devel-
opment in Oregon and not in 
Northern California. Around the 
same time, AWS released their 
second-generation networking 
stack called VPC, the Virtual Pri-

curred. This provided an opportunity to better understand unanticipat-
ed aspects of the old code’s behavior.

Unexpected Behavior
One example of unexpected behavior involved encoding and parsing of 
parameters, which was handled by Ruby’s Rack library. Rack has a very 
permissive idea of what nested parameters can look like. For example, 
from Rack’s perspective all of the following are valid encodings of the 
exact same parameter structure:

●	 source[number]=4242424242424242

●	 [source]number=4242424242424242

●	 [source][number]=4242424242424242

●	 ]][[[][]]]source]]]]]number]]=4242424242424242

https://rack.github.io/


Architectures you’ve always wondered about  // eMag Issue 46 - Nov 201626

vate Cloud. VPC wasn’t released 
initially in the Northern Califor-
nia region. Within a year or two 
of being in AWS, it was clear that 
Stripe needed to move to the Or-
egon region if they wanted to cut 
costs and benefit from new AWS 
features. However, other priori-
ties kept postponing the migra-
tion until mid-2015.

Migration Goals
Three main goals helped guide 
the thinking and major decisions 
during the migration. Goal num-
ber one was no planned down-
time. Stripe simply cannot have 
planned downtime, because 
their user base is global, in many 
time zones, with different pat-
terns of traffic. The second goal 
was to minimize the amount of 
time spent in a vulnerable state. 
In any data center migration, 
there’s a period of reduced resil-
iency, with one foot in each data 
center.

The third goal was to minimize 
the impact on other teams. 
While other teams within Stripe 
were incredibly supportive of 
the migration project, every en-
gineering team has its own re-
sponsibilities and problems to 
deal with. Requesting help from 
another team could impact that 
team’s projects. One pattern was 
to identify places where sever-
al problems could be solved at 
once and benefit multiple teams, 
such as core infrastructure. For 
more specific problems that 
didn’t have a generalized answer, 
repeatable solutions were creat-
ed that individual teams could 
quickly apply. The overall plan 
was to hide the fact of running 
infrastructures in two different 
regions.

The migration was very compli-
cated, with thousands of servers 
running about 150 to 200 dis-
tinct services. There were also 

about ten different stateful data 
stores, databases or queuing sys-
tems, which required additional 
thought and careful planning. 
While many issues, large and 
small, were encountered, a few 
examples provide insight into 
the challenges faced during the 
migration.

Challenges During Migration
The first problem was the net-
work, with traffic between AWS 
regions potentially going over 
the public internet. A VPN with 
independent IP addresses was 
setup to provide secure commu-
nication and a globally routable 
IP space. This simplified connect-
ing to either region by using a 
standard IP address.

Security was another challenge. 
Normally, security groups are 
used with AWS’s firewall imple-
mentation to restrict traffic be-
tween nodes, but security groups 
don’t work across regions. Stripe 
had to work around the default 
security behavior that blocks 
traffic from random IP address-
es. The solution involved a cron 
job to poll the AWS API, list all 
instances, then generate a set of 
IP rules that should be allowed 
and put them into iptables. The 
system was named Rays, after 
the Rays lighthouse outside San 
Francisco, which guides ships 
safely through the fog. Rays was 
run on every host, and worked, 
but also became the source of 
new problems.

A production incident in the AWS 
API caused incomplete results to 
be returned. Rays dutifully took 
the incomplete results, and then 
blocked legitimate traffic. Anoth-
er issue was that iptables use an 
internal table to track connec-
tions, which has a low default 
size. When the table fills up, con-
nections start getting rejected. 
Central services which normal-

ly received many connections 
would reject legitimate traffic. 
This is all reasonable behavior for 
a firewall service’s failure mode, 
but it did cause some scrambling 
to fix the issue. Luckily, because 
the team was moving slowly, the 
problem was found before run-
ning in production.

Databases can be a significant 
source of problems in infrastruc-
ture, especially during a major 
migration. While some could be 
excluded, others had to have 
replicated copies. For MongoDB, 
which has built-in support for 
replication, the migration was 
fairly straightforward once the 
network infrastructure was in 
place. Mongo has primary and 
secondary nodes, and an appli-
cation can connect to any node, 
then be directed to the primary. 
Because all the IP addresses in 
both regions were accessible, 
when nodes were brought up in 
the Oregon region they would 
appear in the standard service 
discovery. The MongoDB migra-
tion is a good example of finding 
a high-leverage problem that 
could be solved once so other 
people didn’t have to. 

The Oregon and California data 
centers are about 30 milliseconds 
away from each other, meaning 
every query is suddenly 30ms 
slower, about a 30x increase in 
query execution time. Consid-
erable effort was spent to limit 
the number of queries whenev-
er possible. Load balancing was 
used to send small amounts of 
traffic between data centers, to 
observe the results. An unfortu-
nate interaction with the least 
connections load balancing 
strategy meant the delay in poll-
ing caused more traffic to be re-
directed than planned. Instead of 
1% of traffic, 20% was diverted. 
Fortunately, the change could be 
rolled back quickly, and nothing 
broke. Lessons were learned, and 
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additional, gradual testing was per-
formed.

The final migration occurred only after 
considerable planning and confidence 
in the preparation work. With owners 
for specific monitoring of dashboards, 
and reasonable time estimates for ev-
ery step, the last effort to move to Or-
egon was completed over a two-hour 
period, with no major issues.

Key Takeaways
The first key takeaway is to find points 
of high leverage. Whenever possible, 
solve a broad problem, instead of try-
ing to solve lots of little problems. 
Common components and infrastruc-
ture, such as consistent data stores, 
made it easier to find points of lever-
age to solve problems once.

Second, test early and test often, be-
cause surprises will always appear. 
Having a plan is extremely important. 
Without a plan and early testing, some 
of the issues wouldn’t have been found 
until the night of the actual migration.

Finally, work incrementally in small 
steps and build on top of established 
layers. Being confident in one piece 
grants the ability to build on top of 
that. For Stripe, incremental changes 
are the most successful, cause the few-
est problems and are the most effec-
tive way to make big changes.

“Work incrementally in small 
steps and build on top of sort of 
the established layers. Once you’re 
confident in one piece, that gives 
you the ability to build on top of 
that—this has been really useful 
in general for us at Stripe; these 
incremental changes are the ones 
that are most successful for us.” 
- Evan Broder
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The Netflix API Platform  
for Server-Side Scripting

Watch online on InfoQ

Sometimes, it’s a good idea for 
software architects and engi-
neers to take a step back and 
think about what is really need-
ed from the systems they devel-
op and manage. What are the 
requirements and needs of the 
system? How are they changing? 
How is the surrounding ecosys-
tem changing? Then, don’t be 
afraid to realize that the system 
may be serving its users well 
right now, but may not be able 
to continue that service into the 
future.

The team responsible for the 
Netflix API has taken that step 
back and evaluated the API in 
the context of current and future 
needs. The analysis has led to 
major changes currently under-
way in the API platform for serv-
er-side scripting.

One way to think about the Net-
flix API is as the front door to the 
Netflix backend. All the microser-
vices that Netflix runs have traf-
fic flowing through the API. This 
includes new customer signup, 
billing, discovery, recommen-

dations, ratings, movie metada-
ta, and, of course, a lot of play-
back-related functionality.

The following diagram depicts 
how traffic from various client 
devices (PCs, TVs, phones, tab-
lets, set-top boxes, etc.) flows 
through gateway systems, then 
the API, which fans out to the 
Netflix ecosystem of microser-
vices. There are about 50 micro-
services that sit directly behind 

Katharina Probst is Engineering Manager at Netflix, where she leads the API team and helps 
bring Netflix streaming to millions of people around the world. Prior to joining Netflix, she was in 
the cloud computing team at Google, where she saw cloud computing from the provider side.

Adapted from a presentation by Katharina Probst, Engineering 
Manager at Netflix, at QCon New York 2016

https://www.infoq.com/presentations/netflix-groovy-scripting
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KEY TAKEAWAYS
The Netflix API is transitioning from using server-side Groovy scripts compiled 
into the API to a layer of Node.js scripts in containers
Non-functional requirements must be considered when making major design 
decisions
Four critical NFRs at Netflix are resiliency, great developer experience, flexible 
APIs, and velocity
Understand which non-functional requirements are most important in your 
environment
Don’t be afraid to make big changes to key systems to ensure they can remain 
relevant and sustain future needs

the API, and then there are hundreds of them in the total ecosystem. The white dot at the center is the API, and 
will be our subject of focus.
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For the purposes of this article, it will be more useful to talk about the system in terms of a simplified architecture 
diagram, to highlight how Netflix is making changes.

On the left are some of the de-
vice types Netflix runs on, rep-
resenting more than a thousand 
different supported devices. The 
code that runs on these devices 
is mostly written in JavaScript, 
a fact that will become import-
ant later on. All these devices 
send traffic to the Netflix servers, 
mostly into the Java API.

The API exposes a service layer 
that is a unified API that all the 
device teams program against, 
and it provides access to all the 
Netflix microservices behind it. 
In practice, all the microservices 
expose client libraries, and the 
API uses those client libraries, 
embedded in the JVM, to access 
the services.

Non-Functional 
Requirements
With a basic context established, 
we need to understand what is 
really needed from the API. In 
addition to all the core features, 
the non-functional requirements 
(NFRs) must also be discussed 
and evaluated on an ongoing 
basis. Among many others, these 

can include low latency, low error 
rates, and great documentation. 
While many NFRs are important, 
four which are critical at Netflix 
are resiliency, great developer 
experience, flexible APIs, and ve-
locity.

Flexible APIs
At Netflix, a flexible API means 
device teams can customize it 
for their own needs. This means 
the people who actually write 
the device code that runs on an 
iPhone or other device, also write 
the server-side logic. The serv-
er side logic, written as Groovy 
scripts, gets compiled and up-
loaded into the API and runs as 
part of the JVM. Today, Netflix 
has about 700 active scripts. This 
probably raises a question about 
what server-side logic do device 
teams write, and why is it need-
ed?

The Groovy scripts are used for a 
variety of tasks, and some of the 
more obvious ones are format-
ting. Compare a mobile phone to 
a 50-inch TV and it’s easy to see 

how the API needs for those de-
vices can be very, very different. 
The screen real estate is different. 
The interaction models are dif-
ferent. This leads to writing very 
different formatting rules and 
rendering.

The server-side scripts are also 
used to implement A/B tests. 
Netflix is constantly evolving 
their systems and trying new fea-
tures in the form of A/B tests. The 
Groovy scripts are a good place 
to implement new functionality 
for the tests. Netflix really cares 
about flexibility for devices, and 
the system in place supports that 
flexibility.

Velocity
The A/B tests are one way to 
maintain a high velocity. Con-
stantly evaluating the system by 
writing new A/B tests is reliant 
upon teams being able to act 
and develop independently of 
one another. The practical im-
plication of this is allowing new 
scripts to be uploaded at any 
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point in time, and not having 
tight development cycles.

This also leads to completely de-
coupling deployments, which 
benefits velocity. The API has a 
regular cadence of deploying 
almost every day. Device teams 
have their own schedules, which 
could be once a week, or weeks 
with no changes, followed by 
daily publishing of multiple ver-
sions. Teams that support older 
devices may have scripts which 
have matured and don’t need 
many updates. This is another as-
pect of the flexibility which is re-
ally important to the Netflix API 
team.

Resiliency
One of the challenges Netflix 
faces is resiliency. The current 
system actually works really well 
most of the time, with automat-
ed checks to prevent many is-
sues. But, sometimes things go 
wrong.

The API sits in the middle of the 
devices and all the Netflix micro-
services. On the side facing the 
microservices, a lot of work has 
already been done to ensure re-
siliency. One of the tools to help 
is Hystrix, which detects failures 
or slowness of backend services. 
If Hystrix detects a problem, it 
will stop sending traffic to those 
services and serve fallback data. 
This adds a lot of resiliency. For 
example, if a personalization 
engine is down, the user may 
not get the most personalized 
experience when they log in to 
Netflix, but they can still explore, 
search and stream videos.

On the other side of the API, 
facing the devices, resiliency is 
more of a challenge. Obscure 
bugs, which aren’t checked for, 
can cause unexpected failures. 
Scripts sometimes consume 
more memory or CPU resources 
than predicted or desired.

Many people may think it’s like 
the Wild West to allow many 
teams to just upload new scripts 
to production, and that’s a some-
what valid assessment. However, 
for several reasons, it works out 
really well most of the time. One 
reason is the Netflix culture of 
freedom and responsibility. The 
people uploading the scripts are 
internal developers, and under-
stand the implications of their ac-
tions. They know what’s at stake 
when they push new versions. 
Another reason is having protec-
tions in place to detect problems 
and recover very quickly.

This system has been around 
for three or four years, and as of 
one or two years ago, there were 
very few scripts, they were rela-
tively small, and there were few 
uploads every day. Contrast that 
with today, and scripts have got-
ten a lot more complex as device 
teams have realized the power 
and flexibility of the system.

The production system now has 
about 700 scripts that run in the 
JVM, and dozens of uploads ev-
ery day. This is great in terms of 
flexibility, creating a platform 
that people can really use and 
develop all kinds of complex ap-
plication on. But it’s also a good 
time to take a step back and eval-
uate if this is what the system 
was designed for, and if it will ad-
equately serve Netflix well into 
the future.

Velocity vs. Resiliency
The complexity of the system 
is growing, and with it, the risk. 
Specifically, the lack of process 
isolation is a growing risk for the 
Netflix API. Several possible miti-
gation strategies have been con-
sidered, but all come with trade-
offs.

One option is publishing scripts 
more slowly. When a new script is 
uploaded, it could be rolled out 
cell by cell, or region by region, 

but wouldn’t be available glob-
ally immediately. This is already 
done to some extent. However, it 
flies in the face of developer ve-
locity, which is really important 
at Netflix. Similarly, doing extra 
validation of memory needs be-
fore publishing flies in the face of 
developer velocity. Probst says, 
“In all these discussions, to me, it 
always feels like we’re trading off 
velocity and resiliency.”

At Netflix, velocity and resiliency 
are both extremely important. In 
your systems, think about what’s 
important to you, what trade-offs 
you face, and whether you actu-
ally have a system that solves all 
your needs.

Adding a Layer of 
Containers
Demanding both velocity and 
resiliency is challenging. Net-
flix is not afraid of making big 
changes, and is not afraid of put-
ting a lot of work into creating 
their ideal API. They’re currently 
working towards a system where 
scripts will run in containers, and 
call the API remotely. This creates 
a slightly modified version of the 
architecture diagram, with a fun-
damental difference (see image 
on next page)

Introducing a new layer for the 
scripts between the devices 
and the service layer has sever-
al benefits. First, the new scripts 
will be written in Node instead 
of Groovy. Because most of the 
device code is written in JavaS-
cript, developers benefit from 
the move to Node.

Most importantly, the new layer 
achieves the desired process iso-
lation, addressing the currently 
growing risk. But wanting pro-
cess isolation doesn’t necessarily 
mean using containers. Again, 
being willing to make major 
changes to the system meant 
the team could look for addition-
al benefits they could achieve 

https://github.com/Netflix/Hystrix
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when writing something new. In 
addition to resiliency, the team 
wanted fast startup and consis-
tent developer experience across 
environments. 

Process Isolation
Anyone moving from a monolith 
to microservices will be familiar 
with some of the steps of break-
ing a very large system into mul-
tiple smaller ones. In the future, 
when a script for one device is 
unavailable, the problem will be 
isolated to that device, instead of 
becoming a problem for all de-
vices.

Independent auto-scaling is an-
other benefit of the future sys-
tem. Some devices have more 
traffic in one region of the world, 
while other devices have differ-
ent traffic patterns throughout 
the day.  These are just two cases 
where being able to auto-scale 
independently for devices is a 
significant improvement over to-
day, where everything sits in the 
API and must scale together.

Fast Startup
The API currently takes minutes 
to startup, whereas containers 
take only seconds, but why does  
that matter? Netflix wants the 
ability to roll out new versions 
quickly, and, more importantly, 
roll back quickly after a problem 
is detected.

One concrete example of this 
need is when a major problem is 
detected and traffic is failed over 
to another region. When this 
happens, the API needs to scale 
up in the other region. The time 
it currently takes to bring up new 
API servers has an impact on the 
ability to respond to problems. 
One hope with a new architec-
ture is improved agility to re-
spond to these scenarios.

Great Developer Experience
Just as resiliency and fast startup 
were important considerations 
that led to the new architecture, 
a great developer experience 
was an equally important goal. 
This means the developers have 
a good experience when they 
develop, they are productive, 
they can find problems quick-

ly, and have a very quick turn-
around cycle.

In today’s system, step-through 
debugging requires a cumber-
some local setup which is dif-
ficult to get working and takes 
time. Developers tend to rely on 
more rudimentary debugging 
techniques, including the use of 
print statements. The future state 
greatly improves on this setup.

A developer using the new en-
vironment will connect the local 
project with a local Docker con-
tainer. A file watcher watches for 
changes in the local project and 
updates the container as needed. 
A Node Inspector is attached to 
the container and the debugger, 
providing the desired debugging 
experience. A network agent 
helps connect the local instance 
to the rest of the Netflix ecosys-
tem in testing environments.

There’s also room for improve-
ments in optimization over the 
current system. Today, an upload-
ed script becomes part of a very 
big server, with a lot of shared 
dependencies. It becomes very 
difficult to optimize the perfor-

https://github.com/node-inspector/node-inspector
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mance of the scripts because of 
differences in calling behavior 
and resource utilization.

Running each script in its own 
container, then calling the API re-
motely means it becomes much 
easier to measure how each 
script behaves and how it can be 
optimized. This also provides the 
ability to throttle traffic if a sud-
den increase from one script is 
detected.

Self-Service Management
Currently, when device teams 
write new scripts, they get up-
loaded to the API and a dedicat-
ed API team actually operates 
the API service. Tools are being 
built in the new system to help 
teams deploy in seconds, and 
then self-manage the operation 
of their code. New UI and CLI 
tools should provide a lot of ba-
sic operations features already 
hooked up for the development 
teams. When a script is deployed 
to the cloud, it should come with 
life cycle management, depen-
dency management, auto-scal-
ing and tooling and insights. 

A new deployment pipeline will 
handle the complete build, test 
and deployment process to roll 
out new versions of a script. Log-
ging is another common feature 
that will be handled automatical-
ly, to ensure development teams 
don’t have to be concerned with 
hooking up to the internal Netflix 
logging mechanism. New ser-
vices become discoverable, and 
also have standard dashboards 
automatically created.

The CLI being developed is called 
NeWT, the Netflix Workflow Tool-
kit. NeWT is another example of 
Netflix having unique problems 
that require custom solutions to 
be developed from scratch. Oth-
er examples include the teleme-
try system ATLAS, and the con-
tainer platform Titus.

Evaluating the Changes
Netflix doesn’t just plan for the 
happy path, and works hard to 
anticipate what will inevitably 
go wrong and how to recover 
quickly from failures. One way to 
evaluate the new API for poten-
tial issues is by sending shadow 
traffic through the new system, 
using very specific use cases and 
a very specific set of devices.

When the system was first set-
up to handle the shadow traffic, 
the new API boxes died within 
hours. Luckily, the testing setup 
ensured no live impact occurred. 
The new system made it much 
easier to pinpoint the root cause, 
in this case a memory leak in the 
API server. A few days later, an-
other issue appeared, a memory 
leak in the Node script, and was 
also easier to identify than in the 
old system.

Request tracing has also proved 
extremely valuable, being able to 
understand the fan-out behavior 
of the new system. As in most mi-
croservice architectures, fan-out 
can be quite complex. When a 
particular pattern is observed, it 
can be evaluated and identified 
as either expected or a potential 
point for optimization.

Bringing it Full Circle
The new API system being devel-
oped at Netflix will ensure legacy 
technology does not become a 
factor that limits the company’s 
ability to respond to change. As 
the API evolves, the team always 
keeps the important non-func-
tional requirements in perspec-
tive. The current system provides 
flexible APIs and velocity, and 
it’s important to always check to 
make sure the new system still 
provides those both. Netflix also 
cares about resiliency and pro-
viding a great developer expe-
rience, and the new API makes 
measurable improvements in 
those areas.

Don’t be afraid to change your 
system if you need to in or-
der to meet the functional and 
non-functional requirements. 
Probst summarizes this very well, 
saying, “Progress is impossible 
without change, and those who 
cannot change their minds can-
not change anything. If we get 
this right and we keep evolving 
our systems to the changing 
needs, then we won’t actually 
have any legacy systems to deal 
with. And I think that’s a compet-
itive advantage, too.”

https://github.com/Netflix/atlas
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Java Agents and Bytecode

In this eMag we have curated articles on bytecode 
manipulation, including how to manipulate bytecode 
using three important frameworks: Javassist, ASM, 
and ByteBuddy, as well as several higher level use cas-
es where developers will benefit from understanding 
bytecode.

43
Exploring Container 
Technology in the Real 
World

The creation of many competing, complementary 
and supporting container technologies has followed 
in the wake of Docker, and this has led to much hype 
and some disillusion around this space. This eMag 
aims to cut through some of this confusion and ex-
plain the essence of containers, their current use cas-
es, and future potential.

44
Cloud Lock-In

Technology choices are made, and because of a va-
riety of reasons--such as multi-year licensing cost, 
tightly coupled links to mission-critical systems, 
long-standing vendor relationships--you feel “locked 
into” those choices. In this InfoQ emag, we explore the 
topic of cloud lock-in from multiple angles and look 
for the best ways to approach it.

The C# programming language was first released to the 
public in 2000. and since that time the language has 
evolved through 6 releases to add everything from gener-
ics to lambda expressions to asynchronous methods and 
string interpolation. In this eMag we have curated a collec-
tion of new and previously content that provides the read-
er with a solid introduction to C# 7 as it is defined today.

A Preview of C# 7

https://www.infoq.com/minibooks/emag-c-sharp-preview
https://www.infoq.com/minibooks/emag-java-agents-bytecode
https://www.infoq.com/minibooks/emag-container-technology
https://www.infoq.com/minibooks/emag-cloud-portability
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