
eMag Issue 59 - Mar 2018

FACILITATING THE SPREAD OF KNOWLEDGE AND INNOVATION IN PROFESSIONAL SOFTWARE DEVELOPMENT

ARTICLE

Polyglot Persistence
Powering
Microservices

ARTICLE

Microservices
Patterns and
Practices Panel

ARTICLE

Managing
Data in
Microservices

microservices
Patterns and Practices

FOLLOW US CONTACT US
GENERAL FEEDBACK feedback@infoq.com
ADVERTISING sales@infoq.com
EDITORIAL editors@infoq.com

facebook.com
/InfoQ

@InfoQ google.com
/+InfoQ

linkedin.com
company/infoq

IN THIS ISSUE
Polyglot Persistence Powering Microservices6

Patterns for Microservice Developer Workflows
and Deployment: Q&A with Rafael Schloming14

Debugging Distributed Systems: Idit Levine
Discusses the Squash Microservices Debugger18

Microservices Patterns and Practices Panel22

Managing Data in Microservices32

https://www.facebook.com/InfoQ-75911537320
https://twitter.com/infoq
https://plus.google.com/+infoq/posts
https://www.linkedin.com/company/infoq

A LETTER FROM THE EDITOR

While the underlying technology and patterns
are certainly interesting, microservices have al-
ways been about helping development teams be
more productive. Whether used as a technique
for architects to manage complexity or to make
small teams more independent and responsible
for supporting the software they create, the hu-
man aspect of microservices cannot be ignored.

Many of the experts who spoke about microser-
vices patterns and practices at QCon San Francis-
co 2017 did not simply talk about the technical
details of microservices. They included a focus on
the business side and more human-oriented as-
pects of developing distributed software systems.

At Netflix, the cloud database engineering team
is responsible for providing several flavors of data
persistence as a service to microservice develop-
ment teams. Roopa Tangirala explained how her
team has created self-service tools that help de-
velopers easily implement the appropriate data
store for each project’s needs.

Drawing on his experience with developing a mi-
croservices application at Datawire in 2013, Ra-
fael Schloming argued that one of the most im-
portant — although often ignored — questions

a development lead should ask is “How do I break
up my monolithic process?” as the development
process is critical to establishing and maintaining
velocity.

With microservices distributed across containers,
how is a developer able to step into the code and
debug what is happening? Idit Levine discussed
the problem and introduced Squash, an open-
source platform for debugging microservices ap-
plications.

Randy Shoup provided practical examples of how
to manage data in microservices, with an empha-
sis on migrating from a monolithic database. He
also strongly advocated for building a monolith
first, and only migrating to microservices after
you actually require the scaling and other bene-
fits they provide.

The microservices track also included a panel
discussion where several experts shared their
experiences and advice for being successful with
microservices. Questions from the audience high-
lighted common themes, such as dealing with
deployments, communication between micros-
ervices, and looking at what future trends might
follow microservices.

Thomas Betts

Rafael Schloming
is co-founder and chief architect of Datawire. He

is a globally recognized expert on messaging
and distributed systems and author of the

AMQP specification. Previously, Schloming was a
principal software engineer at Red Hat. Rafael has

a B.S. in computer science from MIT.

Chris Richardson
is a developer and architect. He is a Java

Champion and the author of POJOs in Action,
which describes how to build enterprise Java

applications with frameworks such as Spring and
Hibernate. Richardson was also the founder of
the original Cloud Foundry, an early Java PaaS

for Amazon EC2. He consults with organizations
to improve how they develop and deploy

applications and is working on his third startup.
He’s on Twitter as @crichardson.

CONTRIBUTORS
Thomas Betts
is a principal software engineer at IHS Markit, with two
decades of professional software development experience.
His focus has always been on providing software solutions
that delight his customers. He has worked in a variety of
industries, including retail, finance, health care, defense and
travel. Thomas lives in Denver with his wife and son, and they
love hiking and otherwise exploring beautiful Colorado.

Louis Ryan
is a core contributor to Istio and gRPC
and is a principal engineer at Google.

Daniel Bryant
 is leading change within organisations and technology.

His current work includes enabling agility within
organisations by introducing better requirement gathering

and planning techniques, focusing on the relevance of
architecture within agile development, and facilitating

continuous integration/delivery.

Idit Levine
is Founder/Leader/Contributor on a variety of Cloud
open source Projects. Expert in cluster management

like: Kubernetes, Mesos & DockerSwam. Hybrid cloud:
AWS, Google Cloud, OpenStack, Xen & vSphere

Comfortable with Cloud Foundry and a laundry list of
other frameworks and tools.

Roopa Tangirala
is an experienced engineering leader with extensive

background in databases, be they distributed or
relational. She leads the Cloud Database Engineering

team at Netflix, responsible for cloud persistent
run-time stores for Netflix, ensuring data availability,
durability, and scalability to meet growing business
needs. The team specializes in providing polyglot

persistence as a service with Cassandra, Elasticsearch,
Dynomite, MySQL, etc.

Randy Shoup
is a 25-year veteran of Silicon Valley, and has
worked as a senior technology leader and

executive at companies ranging from small
startups to mid-sized places to eBay and Google.
He is currently VP Engineering at Stitch Fix in San
Francisco. He is particularly passionate about the
nexus of culture, technology, and organization.

2018 Microservices // eMag Issue 59 - Mar 20186

Polyglot Persistence
Powering Microservices

KEY TAKEAWAYS
Choose the appropriate

persistence store for your
microservices.

By providing polyglot
persistence as a service,
developers can focus on

building great applications
and not worry about tuning,
tweaking, and capacity of

various back ends.

Operating various persistence
stores at scale involves unique

challenges, but common
components can simplify the

process.

Netflix’s common platform
drives operational excellence

in managing, maintaining,
and scaling persistence

infrastructures (including
building reliable systems on

unreliable infrastructure).

Adapted from a presentation at QCon San Francisco 2017,
by Roopa Tangirala, engineering manager at Netflix

Watch presentation online on InfoQ

We have all worked in companies that started small, and have a
monolithic app built as a single unit. That app generates a lot of
data for which we pick a data store. Very quickly, the database
becomes the lifeline of the company.

Since we are doing such an amazing job, growth picks up and
we need to scale the monolithic app. It starts to fail under high
load and runs into scaling issues. Now, we must do the right
thing. We break our monolithic app into multiple microservices
that have better fallback and can scale well horizontally. But we
don’t worry about the back-end data store; we continue to fit
the microservices to the originally chosen back end.

https://www.infoq.com/presentations/microservices-polyglot-persistence
https://www.infoq.com/presentations/microservices-polyglot-persistence

2018 Microservices // eMag Issue 59 - Mar 2018 7

Soon, things become complicat-
ed at our back-end tier. Our data
team feels overwhelmed because
they’re the ones who have to
manage the up time of our data
store. They are trying to support
all kinds of antipatterns of which
the database might not be capa-
ble.

Imagine that instead of trying to
make all of our microservices fit
one persistence store, we lever-
age the strengths and features of
our back-end data tier to fit our
application needs. No longer do
we worry about fitting our graph
usage into RDBMS or trying to fit
ad hoc search queries into Cas-
sandra. Our data team can work
peacefully, in a state of Zen.

Polyglot persistence
powering microservices
I manage the cloud database
engineering team at Netflix. I
have been with Netflix for almost
a decade and I have seen the
company transition from being
monolithic in the data center to
microservices and polyglot per-
sistence in the cloud. Netflix has
embraced polyglot persistence. I
will cover five use cases for it, and
discuss the reasons for choosing
different back-end data stores.

Being a central platform team,
my team faces many challenges
in providing different flavors of
database as a service across all of
Netflix’s microservice platforms.

About Netflix
Netflix has been leading the way
for digital content since 1997.
We have over 109 million sub-
scribers in 190 countries and we
are a global leader in streaming.
Netflix delivers an amazing view-
ing experience across a wide va-
riety of devices, and brings you
great original content in the form

of Stranger Things, Narcos, and
many more titles.

All your interactions as a Netflix
customer with the Netflix UI, all
your data such as membership
information or viewing history, all
of the metadata that a title needs
to move from script to screen,
and so much more are stored
in some form in one of the data
stores we manage.

The Cloud Database Engineering
(CDE) team at Netflix runs on the
Amazon cloud, and we support
a wide variety of polyglot per-
sistence. We have Cassandra, Dy-
nomite, EVCache, Elastic, Titan,
ZooKeeper, MySQL, Amazon S3
for some datasets, and RDS.

Elasticsearch provides great
search, analysis, and visualiza-
tion of any dataset in any format
in near real time. EVCache is a
distributed in-memory caching
solution based on Memcached
that was open-sourced by Netflix
in 2011. Cassandra is a distributed
NoSQL data store that can handle
large datasets and can provide
high-availability, multi-region
replication, and high scalability.
Dynomite is a distributed Dyna-
mo layer, again open-sourced by
Netflix, that provides support for
different storage engines. Cur-
rently, it supports Redis, Mem-
cached, and RocksDB. Inspired by
Cassandra, it adds sharding and
replication to non-distributed
datasets. Lastly, Titan is a scalable
graph database that’s optimized
for storing and querying graph
datasets.

Let’s look at the architecture, the
cloud deployment, and how the
datasets are persisted in Amazon
Web Services (AWS). We are run-
ning in three AWS regions, which
take all of the traffic. User traffic
is routed to the closest region:
primarily, US West 2, US East 1,
and EU West 1. If there’s a prob-

lem with one region, our traffic
team can shift the traffic in less
than seven minutes to the oth-
er two regions with minimal or
no downtime. So all of our data
stores need to be distributed and
highly scalable.

Use case 1: CDN URL
If, like me, you’re a fan of Netflix
(and love to binge-watch Strang-
er Things and other titles), you
know you have to click the play
button. From the moment you
click to the time you see the vid-
eo on the screen, many things
happen in the background. Net-
flix has to look at the user au-
thorization and licensing for the
content. Netflix has a network of
Open Connect Appliances (OCAs)
spread all over the world. These
OCAs are where Netflix stores the
video bits, and the sole purpose
of these appliances is to deliver
the bits as quickly and efficiently
as possible to your devices while
we have an Amazon plane that
handles the microservices and
data-persistence store. This ser-
vice is the one responsible for
generating the URL, and from
there, we can stream the movie
to you.

The very first requirement for this
service is to be highly available.
We don’t want any user experi-
ence to be compromised when
you are trying to watch a movie,
say, so high availability was pri-
ority number one. Next, we want
tiny read and write latencies, less
than one millisecond, because
this service lies in the middle of
the path of streaming, and we
want the movie to play for you
the moment you click play.

We also want high throughput
per node. Although the files are
pre-positioned in all of these
caches, they can change based on
the cache held or when Netflix in-
troduces new movies — there are

2018 Microservices // eMag Issue 59 - Mar 20188

multiple dimensions along which
these movie files can change. So
this service receives high read
as well as write throughputs. We
want something where per-node
throughput can be high so we
can optimize.

For this particular service we used
EVCache. It is a distributed cach-
ing solution that provides low la-
tency because it is all in memory.
The data model for this use case
was simple: it was a simple key
value, and you can easily get that
data from the cache. EVCache is
distributed, and we have multiple
copies in different AWS Availabil-
ity Zones, so we get better fault
tolerance as well.

Use case 2: Playback
error
Imagine that you click play to
watch a movie but you get a play-
back error. The playback error
happens whenever you click the
title — it’s just not playable.

Titles have multiple characteris-
tics and metadata. It has ratings,
the genre, and the description. It
has the audio languages and the
subtitle languages it supports.
It has the Netflix Open Connect
CDN URL, discussed in the first
use case, which is the location
from where the movie streams to
you. We call all of this metadata
the “playback manifest”. And we
need it to play the title for you.

There are hundreds of dimen-
sions that can lead to a playback
metadata error, and there are
hundreds of dimensions that can
alter the user’s playback expe-
rience. For example, some con-
tent is licensed only in specific
countries and we cannot play
that to you if you cross a border.
Maybe a user wants to watch Nar-
cos in Spanish. We might have
to change the bit rate at which
we are streaming the movie de-

pending on your use of Wi-Fi or
a fixed network. Some devices
do not support 4K or HD and we
have to change the stream based
on the device. Beyond these few
examples, there are hundreds of
dimensions on which your play-
back experience depends.

For this service, we wanted the
ability to quickly resolve inci-
dents. We want to have some-
place where we can quickly look
for the cause of an issue — which
dimension is not in sync, which is
causing your playback error. If we
have ruled out a push, we want
to see if we need to roll back, or
roll forward, based on the scope
of the error: is the error happen-
ing in all three regions, in only
specific regions, or on only a par-
ticular device? There are multiple
dimensions which we need to fig-
ure out the dataset.

Another requirement was inter-
active dashboards. We wanted
the ability to slice and dice the
dataset to see the root cause of
that error. Near-real-time search
is important because we want to
figure out whether or not a recent
push has caused the problem at
hand. We need ad hoc queries be-
cause there are so many dimen-
sions; we don’t know our query
patterns. There may be multiple
ways for us to query the dataset
to arrive at what is causing the
error.

We used Elasticsearch for this
service. It provides great search
and analysis for data in any form,
and it has interactive dashboards
through Kibana. We use Elastic-
search a lot at Netflix, especially
for debugging and logging use
cases.

Kibana provides a great UI for
interactive exploration that al-
lows us to examine the dataset to
find the error. We can determine
that the error is in a specific re-

gion across multiple devices, in
a specific device, or confined to a
particular title. Elasticsearch also
supports queries such as “What
are the top 10 devices across Net-
flix?”

Before Elasticsearch, the inci-
dent-to-resolution time was more
than two hours. The process in-
volved looking at the logs, grep-
ping the logs, and looking at the
cause of error and where there’s a
mismatch between the manifest
and what is being streamed to
you. With Elasticsearch, the res-
olution time decreased to under
10 minutes. That has been a great
thing.

Use case 3: Viewing
history
As you watch Netflix, you build
what we call a “viewing history”,
which is basically the titles you
have been watching over the
past few days. It keeps a book-
mark of where you were, and you
can click to resume from where
you stopped. If you look at your
account activity, you can see the
date that you watched a partic-
ular title and you can report if
there’s a problem viewing a title.

For viewing history, we needed a
data store that could store time
series in a dataset. We needed
to support a high number of
writes. A lot of people are watch-
ing Netflix, which is great, so the
viewing history service receives
a lot of writes. Because we are
deployed in three regions, we
wanted cross-region replication
so that if there’s a problem within
one region, we can shift the traffic
and have the user’s viewer histo-
ry available in the other regions
as well. Support of large datasets
was important, since viewing his-
tory has been growing exponen-
tially.

2018 Microservices // eMag Issue 59 - Mar 2018 9

We used Cassandra for this.
Cassandra is a great NoSQL dis-
tributed data store that offers
multi-data-center, multi-direc-
tional replication. This works out
great because Cassandra is doing
the replication for us. It is high-
ly available and highly scalable.
It has great fault detection and
multiple replicas, so that a node
going down doesn’t cause web-
site downtime. We can define dif-
ferent consistency levels so that
we never experience downtime,
even though there are nodes
that will always go down in our
regions.

Data model
The data model for viewing histo-
ry started simple. We have a row
key, which is the customer or user
ID. Each title a user watches is a
column in that particular column
family. When you watch, you are
writing to the viewing history,
and we just write a tiny payload:
the latest title you watched. View-
ing history grows over time, and
Cassandra capably handles wide
rows, so there is no problem. You
can read your whole viewing his-
tory, and when you do so, you are
paginating through your rows.

We quickly ran into issues with
this model. The viewing history
is quite popular, so the dataset is
growing rapidly. A few custom-
ers have a huge viewing history,
so the row becomes very wide.
Even though Cassandra is great
for wide rows, trying to read all of
that data in memory causes heap
pressures and compromises the
99th-percentile latencies.

New data model
So we have a new model, which
we split into two column families.
One is the live viewing history,
with a similar pattern of each col-
umn being a title, so we can con-
tinue to write small payloads. And

then we have a roll-up column
family, which is a combination of
all historical datasets that is rolled
up into another, compressed
column family. This means we
have to do two reads, once from
the compressed family and once
from the live column family. This
definitely helps with the size. We
drastically reduced the size of the
dataset because half of the data
was compressed.

The roll-up happens in the path
of read. When the user is trying
to read from viewing history, the
service knows how many col-
umns they have read. And if the
number of columns is more than
whatever we think it should be,
then we compress the historical
data and move it to the other col-
umn family. This happens all the
time based on your reads, which
works out very nicely.

Use case 4: Digital-asset
management
Our content platform engineer-
ing team at Netflix deals with
tons of digital assets, and needed
a tool to store the assets as well
as the connections and relation-
ships among these assets.

For example, we have lots of art-
work, which is what you see on
the website. The art can come in
different formats, including JPEG,
PNG, etc. We also have various
categories of artwork: a movie
can have art, a character can have
art, and a person can have art, etc.

And each title is a combination
of different things in a package.
The package can include video
elements, such as trailers and
montages, and the video, audio,
and subtitle combination. For
example, we can have French in
the video format with subtitles
in French and Spanish. And then
you have relationships, like a
montage is a type of video.

We wanted a data store where we
could store all of these entities as
well as the relationships.

Our requirements for the digi-
tal-asset management service
were one back-end plane to store
the asset metadata, the relation-
ships, and the connected data-
sets — and the ability to quickly
search that. We used Titan, which
is a distributed graph database.
It’s great for storing graph data-
sets, and it supports various stor-
age back ends. Since we already
support Cassandra and Elastic-
search, it was easy to integrate
into our service.

Use case 5: Distributed
delayed queues
The Netflix content platform en-
gineering team runs a number
of business processes. Rolling
out a new movie, content inges-
tion and encoding, or uploading
to the CDN are all business pro-
cesses that require asynchronous
orchestration between multiple
microservices. Delayed queues
form an integral part of this or-
chestration.

We want delayed queues that
are distributed and highly con-
current because multiple micro-
services are accessing them. And
we wanted at-least-once delivery
semantics for the queue and a
delayed queue, because there
are relationships between all
these microservices and we don’t
know when the queue will be
consumed. A critical requirement
was having priorities within the
shard, so that we can pick up the
queue with the highest priority.

For this particular service, we used
Dynomite. Netflix open-sourced
Dynomite some time ago. It is a
pluggable data store that works
with Redis, Memcached, and
Rocks DB. It works for this use case
because Redis has data structures

2018 Microservices // eMag Issue 59 - Mar 201810

that support queues very well.
Early on, we tried to make queues
work with Cassandra and failed
miserably, running into all kinds
of edge cases. Dynomite worked
superbly for us in this case. And
it provides multiple-data-center
replication and sharding so we,
as application owners, need not
worry about data being replicat-
ed across regions or data centers.

Netflix maintains three sets of
Redis structures for each queue.
One is a sorted set that contains
queue elements by score. The
second is a hash set that contains
the payload, and the key is the
message ID. The third is a sorted
set that contains messages con-
sumed by the client, but which
have yet to be acknowledged. So
the third is the unacknowledged
set.

Identifying the
challenges
I love this quote, but I don’t think
my on-call team feels like this: “I
expected times like this — but I
never felt that they’d be so bad,
so long, and so frequent.”

The first challenge my team faces
is the wide variety and the scale.
We have so many different fla-
vors of data store, and we have
to manage and monitor all these
different technologies. We need
to build a team that is capable of
doing all this while making sure
the team has the skills to cater
to all of these different technolo-
gies. Handling that variety, espe-
cially with a small team, becomes
a challenge to manage.

The next challenge is predicting
the future. With a combination of
all of these technologies, we have
thousands of clusters, tens and
thousands of nodes, petabytes
of data. We need to predict when
our cluster risks running out of ca-
pacity. My central-platform team

should know each cluster’s head
room so that if the application
team says they are increasing ca-
pacity or throughput or adding
a new feature that causes an in-
crease in the back-end IOPS, we
should be able to tell them that
their cluster is sufficient or needs
to scale up.

For maintenance and upgrades
across all clusters, software or
hardware, we need to know
whether we can perform main-
tenance without impacting pro-
duction services. Can we build
our own solution or should we
buy something that’s out there?

Another challenge is monitoring.
We have tens and thousands of
instances, and all of these instanc-
es are sending metrics. When
there’s a problem, we should
know which metrics make the
most sense and which we should
be looking at. We must maintain a
high signal-to-noise ratio.

Overcoming challenges
The very first step in meeting
these challenges is to have ex-
perts. We have two or three core
people in our Cassandra cloud da-
tabase engineering team that we
call subject-matter experts. These
people provide best practices
and work closely with the mi-
croservice teams to understand
their requirements and suggest a
back-end data store. They are the
ones who drive the features and
best practices, as well as the prod-
uct future and vision.

Everybody in the team goes on
call for all of these technologies,
so it’s useful to have a core set of
people that understand what’s
happening and how we can re-
ally fix the back end. Instead of
building automation that applies
patches on top of what is broken,
we can contribute to the open

Netflix’s Cloud
Database Engineering

team provides data
stores as a service,

with self-provisioning
capabilities that allow

application users to
create clusters on

their own.

2018 Microservices // eMag Issue 59 - Mar 2018 11

source or to the back-end data
tier — and produce a feature.

Next, we build intelligent systems
to work for us. These systems take
on all automation and remedia-
tion. They accept the alerts, look
at the config, and use the latency
thresholds we have for each ap-
plication to make decisions, sav-
ing people from getting paged
for each and every alert.

CDE Service
CDE Service helps the CDE team
provide data stores as a service.
Its first component captures the
thresholds and SLAs. We have
thousands of microservices;
how do we know which service
requires what 99th-percentile
latency? We need a way to look
at the clusters and see both the
requirements and what have
we promised so that we can tell
if a cluster is sized effectively or
needs to scale up.

Cluster metadata helps provide a
global view of all the clusters: the

software and kernel version each
runs, its size, and the cost of man-
aging it. The metadata helps the
application team understand the
cost associated with a particular
back end and the data they are
trying to store, and whether or
not their approach makes sense.

The self-service capability of CDE
Service allows application users
to create clusters on their own,
without the CDE team getting in
the way. The users don’t need to
understand all the nitty-gritty de-
tails of the back-end YAML; they
only need to provide minimal in-
formation. We create the cluster
and make sure that it is using the
right settings, it has the right ver-
sion, and it has the best practices
built in.

Before CDE Service, contact infor-
mation only sat outside the sys-
tem. For each application, we’d
need to know who to contact and
which team to page. It becomes
tricky when you’re managing so
many clusters, and having some

central place to capture this
metadata is crucial.

Lastly, we track maintenance win-
dows. Some clusters can have
maintenance windows at night,
while others receive high traffic
at the same time. We decide on
an appropriate maintenance win-
dow for a cluster’s use case and
traffic pattern.

Architecture
Figure 1 shows the architecture,
with the datastore in the center.
For the scheduler on the left, we
use Jenkins, which is based on
cron and which allows us to click
a button to do upgrades or node
replacements. Under that is CDE
Service, which captures the clus-
ter metadata and is the source
of all information like SLAs, Pag-
erDuty information, and much
more. On the top is the monitor-
ing system. At Netflix, we use At-
las, an open-source telemetry sys-
tem, to capture all of the metrics.
Whenever there’s a problem and
we cannot meet the 99th-percen-

Figure 1: CDE architecture

2018 Microservices // eMag Issue 59 - Mar 201812

tile latency, the alert will go off.
On the very right is the remedia-
tion system, an execution frame-
work that runs on containers and
that can execute automation.

Anytime an alert fires, the moni-
toring system will send the alert
to the remediation system. That
system will perform automated
remediation on the data store
and won’t even let the alert go
to the CDE team. Only in situa-
tions for which we have not yet
built automation will alerts come
directly to us. It is in our team’s
best interest to build as much au-
tomation as possible, to limit the
number of on-call pages we need
to respond to.

SLA
Figure 2 shows the cluster view
where I can look at all of my clus-
ters. I can see what version they
are running, which environment
they are, which region they are
in, and what are the number of
nodes. This view also shows the
customer email, the Cassandra

version, the software version, the
hardware version, the average
node count, and various costs. I
can also look at my oldest node,
so I can see if the cluster has a
very old node we need to replace,
then we will just run remedia-
tions. There’s a job that scans for
old nodes and run terminations.
In the interest of space, I have not
shown many columns, but you
can pick what information you
want to see.

We have another UI for creating
new clusters, specific to each
data store. An application user
needs to provide only a cluster
name, email address, the amount
of data they are planning to store,
and the regions in which to create
the cluster — then the automa-
tion kicks off the cluster creation
in the background. This process
makes it easy for a user to create
clusters whenever they want, and
since we own the infrastructure,
we make sure that the cluster cre-
ation is using the right version of
the data store with all of the best
practices built in.

When an upgrade is running, it
can be tricky to figure out what
percentage of the test clusters
and prod clusters have been up-
graded across a fleet that num-
bers in the thousands. We have a
self-service UI to which applica-
tion teams can log in to see how
far along we are in the upgrade
process.

Machine learning
Earlier, I mentioned having to
predict the future. Our telemetry
system stores two weeks of met-
rics, and previous historical data
is pushed to S3. We analyze this
data using Kibana dashboards to
predict when the cluster will run
out of capacity.

We have a system called predic-
tive analysis, which runs models
to predict when a cluster will run
out of capacity. The system runs
in the background and pages us
or notifies us on a Slack channel
when it expects a cluster to ex-
ceed capacity in 90 days. With
Cassandra, we only want to use a

Figure 2: CDE Self Service UI

2018 Microservices // eMag Issue 59 - Mar 2018 13

third of the storage allocation for
the dataset, a third for the back-
ups, and the last third for com-
pactions. It is important to have
monitoring in place and to have a
system that warns us beforehand,
not at the cusp of the problem
because that leads to all kinds of
issues.

Since we are dealing with stateful
persistence stores, it is not easy to
scale up. It’s easier with stateless
services; you can do red/black
or scale up the clusters with au-
to-scaling groups and the clusters
can increase in size. But it’s tricky
for persistence stores because it’s
all data on nodes, and the stores
have to stream to multiple nodes.
That’s why we use predictive
analysis.

Proactive maintenance
Things go down in the cloud and
hardware is bound to fail. We
registered to receive Amazon’s
notifications and we terminate
the nodes in advance instead
of waiting for Amazon to termi-
nate them for us. Because we are
proactive, we can do the mainte-
nance in the window we like, as
well as hardware replacements,
terminations, or whatever we
want to do.

For example, we don’t rely on Cas-
sandra’s bootstrap ability to bring
up nodes because that takes a lot
of time. It takes hours and some-
times even days for clusters, like
some of ours, with more than
one terabyte of data per node. In
those cases, we have built a pro-
cess that copies the data from
the node, puts it into a new node,
then terminates the first node.

Upgrades
Software and hardware upgrades
across all these different instanc-
es of polyglot persistence is an
effort because any change to the

back end can have a big impact.
A problem, like a buggy version,
can compromise all of your up-
time. We have built a lot of con-
fidence into our upgrades with
Netflix Data Bench (NDBench),
an open-sourced benchmarking
tool. It is extensible so we can use
it for Cassandra, Elasticsearch,
or any store that we want. In the
NDBench client, we specify the
number of operations we want to
throw at our cluster, the payload,
and the data model we want. This
allows application teams to test
their own applications using ND-
Bench.

When we upgrade, we look at
four or five popular use cases. For
example, we may try to capture
80 percent reads and 20 percent
writes or 50 percent reads and
50 percent writes. We are trying,
with only a few use cases, to cap-
ture the more common payloads
people are using in the clusters.
We run the benchmark before the
upgrade, capturing the 99th-per-
centile and average latencies. We
perform the upgrade and run
the benchmark again. We com-
pare the before and after bench-
marks to see if the upgrade has
introduced any regression or has
caused problems that increased
the latencies. This helps debug a
lot of issues before they happen
in production. We never upgrade
when this particular compari-
son reveals a problem. That’s the
reason we are able to roll out
all these upgrades behind the
scenes without our application
teams even realizing that we are
upgrading their cluster.

Real-time health checks
We also handle health checks at
the node level and cluster lev-
el. Node level is whether or not
a data store is running and if we
have any hardware failures. Clus-
ter level is what one node thinks

about the other nodes in the clus-
ter.

The common approach is to use
cron to poll all the nodes, then use
that input to figure out whether
or not the cluster is healthy. This is
noisy, and will produce false pos-
itives if there are network prob-
lems from the cron system to the
node or if the cron system goes
down.

We moved from that poll-based
system to continual, streaming
health checks. We have a contin-
ual stream of fine-grained snap-
shots being pushed from all the
instances to a central service we
call Mantis, which aggregates
all the data and creates a health
score. If the score exceeds a cer-
tain threshold, the cluster is de-
termined to be not healthy.

We have a few dashboards where
we can see the real-time health.
The macro view shows the rel-
ative sizes of the clusters with
color coding to indicate if a clus-
ter is healthy or not. Clicking on
a unhealthy node will show a
detailed view of the cluster and
that node. Clicking on the bad in-
stance shows details about what
is causing trouble, which helps
us easily debug and troubleshoot
the problem.

Takeaway
The takeaway from all of this is
that balance is the key to life. You
cannot have all your microser-
vices using one persistent store.
At the same time, you don’t want
each and every microservice to
use a distinct persistent store.
There’s always a balance, and I’m
hoping with what I’ve covered
you will find your own balance
and build your own data store as
a service.

2018 Microservices // eMag Issue 59 - Mar 201814

Patterns for Microservice
Developer Workflows
and Deployment

InfoQ recently sat down with
Rafael Schloming, CTO and
chief architect at Datawire, and
discussed the challenges that
face modern software-driven
organizations.

KEY TAKEAWAYS
People don’t really care about moving

to microservices per se. What they really
care about is increasing feature velocity. In
order to apply many people to a problem,

you need to divide them up into teams,
because people simply can’t communicate

effectively within very large groups.

You can organize your people as
independent, cross-functional, and self-

sufficient feature teams that own an entire
feature from beginning to end. When

you do this, you end up breaking up that
monolithic process that was the gating

factor for feature velocity.

A microservice system of any complexity
cannot be instantiated fully locally, and

therefore a hosted development platform
must provide developer isolation and

developer-driven real-time deployments

A service (mesh) proxy like Envoy is a
good way to implement developer isolation

through smart routing, and it can also
provide developer-driven deployments
using techniques like canary releasing.

Q&A with Rafael Schloming

https://www.linkedin.com/in/rafael-schloming-792a4b8/

2018 Microservices // eMag Issue 59 - Mar 2018 15

Although the implementation
of microservices is often sim-
ply a side effect of the desire to
increase velocity through ap-
plication decomposition and
decoupling, there are inherent
developer workflow and deploy-
ment requirements that must be
met. Schloming here elaborates
further on this and discusses how
Kubernetes and the Envoy service
proxy (with control planes like Is-
tio and Ambassador) can meet
this need.

InfoQ: A key premise of your
recent QCon San Francisco pre-
sentation appeared to be that
organizations that are moving
from a monolithic application
to a microservice-based archi-
tecture also need to break up
their monolithic process. Can
you explain a little more about
this?

Rafael Schloming: This is actually
based on the premise that people
don’t really care about moving to
microservices per se — what they
really care about is increasing fea-
ture velocity. Microservices sim-
ply happen to be a side effect of
making the changes necessary to
increase feature velocity.

It’s pretty typical for organiza-
tions as they grow to get to a
point where adding more people
doesn’t increase feature veloci-
ty. When this happens, it is often
because the structure and/or
process the organization uses to
produce features have become
the bottleneck, rather than the
headcount.

When an organization hits this
barrier and starts investigating
why features seem to be taking
much longer than seems reason-
able given the resources avail-
able, the answer is often that
every feature requires the coor-

dination of too many different
teams.

This can happen across two dif-
ferent dimensions. Your people
can be divided into teams by
function: product versus devel-
opment versus QA versus oper-
ations. Your people can also be
divided up by component: e.g.,
front end versus domain model
versus search index versus noti-
fications. When a single feature
requires coordinating efforts
across too many different teams,
the gating factor for delivering
the feature is how quickly and
effectively those different teams
can communicate. Organizations
structured like these are effec-
tively bottlenecked by a single
monolithic process that requires
each feature to be understood
(at some level) by far too much of
the organization.

InfoQ: So how do you fix this?

Schloming: In order to apply
many people to a problem, you
need to divide them up into
teams somehow, because peo-
ple simply can’t communicate
effectively in very large groups.
When you do this you are making
a set of tradeoffs. You are creat-
ing regions of high-fidelity com-
munication and coordination
within each team, and creating
low-fidelity communication and
relatively poorer coordination
between teams.

To improve feature velocity in an
organization, you can organize
your people as independent,
self-sufficient feature teams that
own an entire feature from be-
ginning to end. This will improve
feature velocity in two ways.
First, since the different functions
(product, development, QA, and
operations) are scoped to a single
feature, you can customize the
process to that feature area —

e.g., your process doesn’t need to
prioritize stability for a new fea-
ture that nobody is using. Second,
since all the components needed
for that feature are owned by the
same team, the communication
and coordination necessary to
get a feature out the door can
happen much more quickly and
effectively.

When you do this, you end up
breaking up that monolithic
process that was the gating fac-
tor for feature velocity, and you
create many smaller processes
owned by your independent fea-
ture teams. The side effect of this
is that these independent teams
deliver their features as micros-
ervices. The fact that this is a side
effect is really important to un-
derstand. Organizations that look
to gain benefit directly from mi-
croservices without understand-
ing these principles can end up
exacerbating their problems by
creating many small component
teams and worsening their com-
munication problems.

InfoQ: Could you explain how
this relates to the three devel-
opment phases that, you men-
tioned, applications progress
through: prototyping, produc-
tion, and mission-critical?

Schloming: Each phase rep-
resents a different tradeoff be-
tween stability and velocity. This
in turn impacts how you optimal-
ly go about the different kinds of
activities necessary to deliver a
feature: product, development,
QA, and operations.

In the prototyping phase, there
is a lot of emphasis on putting
features in front of users quickly,
and because there are no existing
users, there is relatively little need
for stability. In the production
stage, you are generally trying to
balance stability and velocity. You

2018 Microservices // eMag Issue 59 - Mar 201816

want to add enough features to
grow your user base, but you also
need things to be stable enough
to keep your existing users hap-
py. In the mission-critical phase,
stability is your primary objective.

If the people in your organiza-
tion are divided along these lines
(product, development, QA, and
operations), it becomes very diffi-
cult to adjust how many resourc-
es you apply to each activity for
a single feature. This can show
up as new features moving really
slowing because they follow the
same process as mission-criti-
cal features or it can show up as
mission-critical features breaking
too frequently in order to accom-
modate the faster release of new
features.

By organizing your people into
independent feature teams, you
can enable each team to find
the ideal stability versus velocity
tradeoff to achieve its objective,
without forcing a single global
tradeoff for your whole organiza-
tion.

InfoQ: Another key premise
from the talk was that teams
building microservices must
be cross-functional and able
to get self-service access to the
deployment mechanisms and
the corresponding platform
properties like monitoring,
logging, etc. Could you expand
on this?

Schloming: There are really two
different factors here. First, if your
team owns an entire feature, then
it needs expertise in all the com-
ponents that go into that feature,
from front end to back end and
anything between. Second, if
your team owns the entire life-
cycle of a feature from product
to operations, your team needs
expertise in all these different en-

gineering-related activities — it
can’t just be a dev team.

Of course, this can require a lot
of expertise, so how do you keep
the team small? You need to find
a way for your feature teams to
leverage the work of other teams
in the organization without the
communication pathways be-
tween teams getting in the criti-
cal path of feature development.
This is where self-service infra-
structure comes into play. By pro-
viding a self-service platform, a
feature team can benefit from the
work that a platform team does
without having to file a ticket and
wait for a human to act upon it.

InfoQ: What kind of tooling can
help with self-service access
for deployment, and also to
the platform?

Schloming: Kubernetes provides
some great primitives for this
sort of thing — e.g., you can use
namespaces and quotas to allow
independent teams to safely co-
exist within a single cluster. How-
ever, one of the bigger challenges
here comes with maintaining a
productive development work-
flow as your system increases in
complexity. As a developer, your
productivity depends heavily on
how quickly you can get feed-
back from running code.

A monolithic application will
typically have few enough com-
ponents that you can wire them
all together by hand and run
enough of the system locally that
you have rapid feedback from
running code as you develop.
With microservices, you quickly
get to the point where this is no
longer feasible. This means that
your platform, in addition to be
able to run all your services in
production, also needs to pro-
vide a productive development
environment for your develop-

ers. This really boils down to two
problems:

1. Developer isolation: With many
services under active develop-
ment, you can’t have all your de-
velopers share a single dev clus-
ter, or everything is broken all the
time. Your platform needs to be
able to provision isolated cop-
ies of some or all of your system
purely for the purpose of devel-
opment.

2. Developer/real-time deploy-
ments: Once you have access to
an isolated copy of the system,
you need a way to get the code
from your fingertips running
against the rest of the system as
quickly as possible. Mechanically,
this is a deployment because you
are taking source code and run-
ning it in on a copy of prod.

This is pretty different though in
some other important respects.
When you deploy to production
there is a big emphasis on strict
policies and careful procedures:
e.g., passing tests, canary de-
ploys, etc. For these developer
deployments, there is a huge pro-
ductivity win from being able to
dispense with the safety and pro-
cedure and focus on speed: e.g.,
running just the one failing test
instead of the whole suite, not
having to wait for a git commit
and webhook, etc.

InfoQ: Could you explain these
problems and how to solve
them in a little more depth?

Schloming: For developer isola-
tion, there are two basic strate-
gies:

• Copy the whole Kubernetes
cluster.

• Use a shared Kubernetes clus-
ter, but copy individual re-
sources (such as Kubernetes

2018 Microservices // eMag Issue 59 - Mar 2018 17

services, deployments, etc.)
for isolation, and then use re-
quest routing to access the
desired code.

Almost any system will grow to
the point of requiring both strat-
egies.

To implement developer isola-
tion, you need to ensure all your
services are capable of multi-
version deployments, and you
need a layer-7 router, plus a fair
amount of glue to wire it all into
a safe and productive workflow
on top of git. For multiversion de-
ployments, I’ve seen people use
everything from sed to envsubst
to fancier tools like Helm, kson-
net, and Forge for templating
their manifests. For a layer-7 rout-
er, Envoy is a great choice and
super easy to use, and is available
within projects like Istio and the
Ambassador API gateway that
add a more user-friendly control
plane.

For developer/real-time deploy-
ments, there are two basic strat-
egies:

• Run your code in the Kuberne-
tes cluster, and optimize the
build/deploy times.

• Compile and run your code
locally and then route traffic
from the remote Kubernetes
cluster to your laptop, and
from the code running on
your laptop back to the your
remote cluster.

Both these strategies can sig-
nificantly improve developer
productivity. Tools like Draft and
Forge are both geared towards
the first strategy, and there are
tools like kube-openvpn and
Telepresence for the second.

One thing is for sure, there is still a
lot of DIY required to wire togeth-
er a workable solution.

InfoQ: You mentioned the ben-
efit that service-mesh technol-
ogy, like Envoy, can provide for
interservice communication
(“east-west” traffic) in regard
to observability and fault
tolerance. What about ingress
(“north-south” traffic)? Are
there benefits to using similar
technology here?

Schloming: Yes. In fact, in regards
to bang for buck, this is the place
I would look to deploy something
like Envoy first. By placing Envoy
at the edge of your network, you
have a powerful tool to measure
the quality of service that your
users are seeing, and this is a key
building block for adding canary
releases into your dev workflow,
something that is critical for any
production or mission-critical
services you have.

InfoQ: How do you think the
Kubernetes ecosystem will
evolve over the next year? Will
some of the tools you mention
become integrated within this
platform?

Schloming: I certainly wouldn’t
be surprised to see deeper inte-
gration between Envoy and Ku-
bernetes. One thing I certainly
hope to see is some stabilization.
Kubernetes and Envoy are both
foundational pieces of technol-
ogy. Together they provide the
core parts of an extremely flex-
ible and powerful platform, but
you really need to spend a while
becoming an expert in order to
leverage them.

I think in regards to the larger eco-
system, we’ll see more projects
geared at allowing non-experts
to leverage some of the benefits
these tools can offer.

InfoQ: Is there anything else
you would like to share with
InfoQ readers?

Schloming: The Datawire team
is working on a range of open-
source tooling for improving the
Kubernetes developer experi-
ence, and so we are always keen
to get feedback from the com-
munity. Readers can contact us
through our website, Twitter, or
Gitter, and you can often find us
speaking at tech conferences.

The video from Schloming’s QCon
San Francisco 2017 talk “Micros-
ervices: Service-Oriented Devel-
opment” can be found on InfoQ
alongside a summary of the talk.

https://helm.sh/
https://ksonnet.io/
https://ksonnet.io/
https://forge.sh
https://www.envoyproxy.io/
https://istio.io
https://www.getambassador.io
https://draft.sh/
https://forge.sh/
https://github.com/pieterlange/kube-openvpn
https://www.telepresence.io/
https://www.datawire.io/faster/canary-workflow/
https://www.datawire.io/faster/canary-workflow/
https://www.datawire.io/
https://articles.microservices.com/in-search-of-an-effective-developer-experience-with-kubernetes-9ef0d7a144e7
https://articles.microservices.com/in-search-of-an-effective-developer-experience-with-kubernetes-9ef0d7a144e7
https://twitter.com/datawireio
https://gitter.im/datawire/ambassador
https://www.infoq.com/presentations/service-oriented-development?utm_source=infoq&utm_medium=Microservices-eMag&utm_campaign=internal
https://www.infoq.com/presentations/service-oriented-development?utm_source=infoq&utm_medium=Microservices-eMag&utm_campaign=internal
https://www.infoq.com/presentations/service-oriented-development?utm_source=infoq&utm_medium=Microservices-eMag&utm_campaign=internal
https://www.infoq.com/news/2017/11/service-oriented-development?utm_source=infoq&utm_medium=Microservices-eMag&utm_campaign=internal

2018 Microservices // eMag Issue 59 - Mar 201818

Debugging
Distributed Systems

KEY TAKEAWAYS
Debugging a microservice-based application

is more challenging than debugging a
monolithic application as it is difficult to attach
a native debugger to multiple processes that

communicate across a network.

Currently, the best approach to debugging
microservices relies on obtaining a trace of

all transactions and dependencies using tools
that, for example, implement the OpenTracing
API standard. OpenTracing tools are powerful,
but they have limitations and gaps, especially

for ad hoc observation.

Squash is an open-source microservice
debugging tool that orchestrates run-time

debuggers attached to microservices (running
within containers deployed onto IaaS or

CIaaS), and provides familiar features like
setting breakpoints, stepping through the

code, viewing and modifying variables, etc.

A service mesh may be the future best point
of integration for such observation and

debugging, and Squash currently includes
early integration work with Istio and the Envoy

service proxy.

Idit Levine Discusses the Squash
Microservices Debugger

At QCon San Francisco 2017, Idit Levine, founder and
CEO of solo.io, presented “Debugging Containerized
Microservices” in which she outlined the challenges
of debugging a distributed microservice-based sys-
tem.

Levine began by comparing the debugging of
monolithic and microservice-based applications. A
monolithic application typically consists of a single
process, and attaching a debugger to this process
reveals the complete state and the flow of execu-
tion. Because a microservice-based application is

Watch presentation online on InfoQ

https://www.infoq.com/presentations/squash-microservices-container?utm_source=infoq&utm_medium=Microservices-eMag&utm_campaign=internal
https://qconsf.com?utm_source=infoq&utm_medium=Microservices-eMag&utm_campaign=internal
https://qconsf.com/sf2017/presentation/debugging-containerized-microservices?utm_source=infoq&utm_medium=Microservices-eMag&utm_campaign=internal
https://qconsf.com/sf2017/presentation/debugging-containerized-microservices?utm_source=infoq&utm_medium=Microservices-eMag&utm_campaign=internal
https://www.linkedin.com/in/iditlevine/

2018 Microservices // eMag Issue 59 - Mar 2018 19

inherently a distributed system
consisting of multiple processes
communicating over a network,
this adds significant complexity
to the challenges of effective de-
bugging.

The remainder of the talk pre-
sented three approaches to de-
bugging microservices: distribut-
ed tracing, using the open-source
Squash microservices debugger
that Levine has created, and ex-
ploiting the underlying capabili-
ties of a service mesh.

Distributed tracing tools, such
as Open Zipkin — which im-
plements the OpenTracing API
specification hosted by the Cloud
Native Computing Foundation
— can be used to monitor and
understand the flow of execution
through a microservices-based
application. This approach has
several advantages: it easily
sends data to any logging tool,
even from OSS components; it
enables critical-path analysis;
developers can drill down into
request latency and other asso-
ciated trace context metadata in
very high fidelity; and operators

can conduct system topology
analysis and identify bottlenecks
due to shared or contended re-
sources.

Disadvantages to distributed
tracing include: the inability to
perform run-time debugging or
modification of application state;
the approach often requires
wrapping/decorating and chang-
ing the code, which can incur a
performance penalty at run time;
and there is no holistic view of
the application state — develop-
ers can only see what was output
as part of the trace and associat-
ed baggage.

For the second approach, Levine
presented her company’s open-
source Squash microservices
debugger. Squash currently sup-
ports debugging within Visual
Studio Code (VS Code) — or in
IntelliJ for Java and Kubernetes
only — of microservice appli-
cations that are written in a lan-
guage that can be debugged by
Delve (the Go language), GDB
(C++, Objective C, Java, etc.),
and its own language-specific
debugging protocols for Java,
Node.js, and Python. The services
must be deployed to the Kuber-
netes container-orchestration
platform or a platform that can
use Istio, which itself is currently

https://github.com/solo-io/squash
https://github.com/openzipkin
http://opentracing.io/
https://www.cncf.io/
https://www.cncf.io/
https://github.com/opentracing/specification/blob/master/specification.md#user-content-set-a-baggage-item
https://github.com/derekparker/delve
https://www.gnu.org/s/gdb/
https://github.com/solo-io/squash#user-content-supported-debuggers
https://kubernetes.io/
https://kubernetes.io/
https://github.com/solo-io/squash/blob/master/docs/platforms/istio.md

2018 Microservices // eMag Issue 59 - Mar 201820

Kubernetes-focused. (Istio does
offer limited support for Docker
and HashiCorp’s Nomad, but it is
worth noting that all of Squash’s
Istio examples use Kubernetes as
the underlying platform). Squash
would like to add support for
more IDE, language, and runtime
platforms, and encourages com-
munity contributions.

The Squash architecture con-
sists of a Squash server that is
deployed and runs on the target
platform (for example, as a Dae-
monSet on a Kubernetes node).
The server holds the information
about the breakpoints for each
application, and orchestrates the
Squash clients. The Squash clients
also deploy on the target plat-
form. Squash uses an IDE as its
user interface — as mentioned,
currently only VS Code and
IntelliJ (for Java and Kubernetes).
Squash commands are available
in the IDE command palette after
installing the Squash extension.

Levine’s third approach to de-
bugging microservices is to
use the capabilities of a service

mesh such as Istio or Envoy. A
service-mesh data plane, such
as Envoy, touches every packet/
request in the system, and is re-
sponsible for service discovery,
health checking, routing, load
balancing, authentication/autho-
rization, and observability. A ser-
vice-mesh control plane, such as
Istio, provides policy and configu-
ration for all running data planes
in the mesh. These properties
provide ideal points of introspec-
tion and execution flow control.
Istio currently integrates with the
Open Zipkin and Jaeger distribut-
ed tracing systems and, as men-
tioned, with Squash.

She concluded by suggesting
that the ultimate solution would
be to integrate all three of these
approaches to debugging,
and encouraged the audience
to get involved via the solo.io
Slack channel and contribute to
Squash.

InfoQ recently sat down with
Levine to elaborate on the chal-
lenges of observing and debug-

ging distributed systems and ap-
plications.

InfoQ: How has operational
and infrastructure moni-
toring evolved over the last
five years? How have cloud,
containers, and new architec-
tural styles like microservices
impacted monitoring and
debugging?

Idit Levine: Monitoring the state
of an application is important
during development and in pro-
duction. With a monolithic ap-
plication, this is rather straight-
forward, since one can attach a
native debugger to the process
and have the ability to get a com-
plete picture of the state of the
application and its evolution.

Monitoring a microservice-based
application poses a greater chal-
lenge, particularly when the ap-
plication is composed of tens or
hundreds of microservices. Due
to the fact that any request may
involve being processed by many
microservices running multiple

https://istio.io/docs/setup/consul/quick-start.html
https://istio.io/docs/setup/consul/install.html
https://github.com/solo-io/squash#user-content-roadmap
https://github.com/solo-io/squash#user-content-roadmap
https://marketplace.visualstudio.com/items?itemName=ilevine.squash
https://plugins.jetbrains.com/plugin/10397-squash-debugger-extension
https://istio.io/
https://github.com/envoyproxy/envoy
https://github.com/jaegertracing/jaeger
http://slack.solo.io/
http://slack.solo.io/
https://github.com/solo-io/squash#user-content-roadmap

2018 Microservices // eMag Issue 59 - Mar 2018 21

times — potentially on different
servers — it is exceptionally diffi-
cult to follow the “story” of the ap-
plication and identify the causes
of problems when they arise.

Currently, the main methodology
relies on obtaining a trace of all
transactions and dependencies
using tools that, for example, im-
plement the OpenTracing stan-
dard. These tools capture timing,
events, and tags, and collect this
data out of band (asynchronous-
ly). OpenTracing allows users to
perform critical-path analysis,
monitor request latency, perform
topological analysis and identi-
fy bottlenecks due to shared re-
sources. Users can also log what
they think could be useful data,
like the values of different vari-
ables, error messages, etc.

InfoQ: We’ve been eagerly
watching the evolution of
Squash and would be keen to
hear the goals of the project
and the rationale for creating
this.

Levine: OpenTracing tools are
very powerful, but they have lim-
itations and gaps. Since logging
the state of the application during
run time can be expensive and
result in performance overhead,
one needs to limit the amount of
collected information. One way
to do this is to follow only a sub-
set of the transactions, and not
all of them. Tuning the size of this
sample represents a tradeoff be-
tween the amount of information
collected on one hand and the
price in performance and costs
on the other.

One consequence is that once a
problem is identified, it is possi-
ble that some needed informa-
tion is missing. Obtaining this
information requires running
the application again, and wait-
ing for the data to be collected.

Moreover, OpenTracing is not a
run-time debugger and does not
allow changing variables during
run time to explore potential
solutions to a problem. Any at-
tempt to fix a problem requires
wrapping the code, running the
application, and waiting for the
data again. Solving a problem
may necessitate several such iter-
ations, which can be both daunt-
ing and expansive.

 Our vision for Squash is to com-
plement the OpenTracing tools
and close these gaps. The main
goal of Squash is to provide an
efficient tool for debugging mi-
croservices applications. Squash
orchestrates run-time debug-
gers attached to microservices,
providing familiar features like
setting breakpoints, stepping
through the code, viewing and
modifying variables, etc. Impor-
tantly, Squash allows the devel-
oper to seamlessly follow the
application and skip between
microservices. Squash takes care
of all the necessary piping, allow-
ing developers to focus on their
own code and solve the issues
they actually care about. To make
Squash accessible and easy to
adopt, it integrates with existing
popular IDEs.

Squash is designed to provide
essential capabilities for monitor-
ing the lifecycle of an application
both in the development phase,
allowing development of robust
code, as well as during produc-
tion, allowing fast adaptation of
the code when new difficulties
arise.

InfoQ: What other tools do you
think future developers will
need to understand and debug
large-scale, rapidly evolving
container-based applications?

Levine: As a community, we
should aspire to provide distrib-

uted applications the same level
of observability and control that
is available for monolithic appli-
cations. A combination of exist-
ing tools already points us in the
right direction. Log collection can
be done by OpenTracing tools,
metrics collected by Prometheus,
and debugging by Squash. All of
these methods should plug into a
service mesh to achieve full effi-
ciency.

InfoQ: What role do you think
QA/testers have in relation to
observability and debuggabili-
ty of a system?

Levine: In one possible mode
of action, I would expect the QA
and testers to focus on the logs
and provide context. With con-
tainer-based applications, this
should be done using OpenTrac-
ing. The developer will then be
able to reproduce the bug and
use Squash to attach a debugger,
step through the code, and re-
solve the issue.

InfoQ: Is there anything else
you would like to share with
the InfoQ readers?

Levine: We at solo.io are work-
ing hard at building more open-
source tools to facilitate mi-
croservices development and
operation. In particular, we are
focused on innovative and help-
ful tools to accelerate adoption
of microservices in the enter-
prise. We are super excited about
our plans for 2018 — please stay
tuned!

http://opentracing.io/
https://github.com/opentracing/specification/blob/master/specification.md
https://github.com/opentracing/specification/blob/master/specification.md
https://prometheus.io/

2018 Microservices // eMag Issue 59 - Mar 201822

Microservices Patterns
and Practices Panel
Microservices almost seem to be the
de facto way to build systems today,
but are they always the answer?

KEY TAKEAWAYS

Defining the boundary contexts for
microservicess is a particular challenge.
In general, you need to really know your
problem domain before you can get this
right — in a field like banking, where the
boundary cases are already well known
and have been for many years, you can
operate as a startup. That’s less true in
other problem domains, but you can
start by organizing around business

objects.

Decomposition applies at many levels.
In a sense, you decompose methods,
classes, packages, and modules, and

so microservices is just another level in
that kind of hierarchy. However, they

also have a strong relationship to team
structure.

Scale is one strong reason to consider
microservices, and the most often

cited perhaps along with team velocity,
but another is security — if you have

two things that shouldn’t share a trust
domain, for example.

If you do choose microservices, you’ll face challenges at
scale at both a technical and organizational level. What
strategies should you use now that you are effectively
building a distributed system? What’s the one thing you
wish you’d known before you got here?

This panel session brought together many of the most
popular session speakers at QCon San Francisco 2017 for
a frank discussion on microservices with the Microservices
track host.

2018 Microservices // eMag Issue 59 - Mar 2018 23

Question: How do you manage
your data when you are doing
red/black deployments? For
instance, you might have a
version that writes new records,
which the old version doesn’t
understand. How does the old
version know it is not an error
but actually real data?

Roopa Tangirala: In most red/
black deployments at Netflix,
whenever there are data chang-
es, you can do it. It is stateless; it is
not a problem. But when you have
changes for Cassandra, it is sche-
ma-less. So when you are adding a
new column or changing schema,
you don’t necessarily need to do
a DDL to change the schema. You
can keep directly inserting into the
new data set with the new column.
That is one way.

And the other way, if they help the
migration from one column fam-
ily to another, we help them build
tools; we own the client libraries so
we can help them write to the old
and to the new. We have tools like
Forklift, which helps move from the
source to the destination. But not
all red/black deployments need

changes where we are moving
data around, at least at Netflix.

Chris Richardson: For zero-down-
time deployments, constrain the
kinds of changes you can make at
the database level. So you could
add a nullable column, for instance,
but you cannot just drop a column.
So carefully make changes, and de-
couple database schema changes
from your zero-downtime deploy-
ment.

Randy Shoup: Yeah, don’t do what
you just said. Not even kidding.
What you did is you broke the in-
terface. You made a non-back-
ward-compatible data change and
you exposed it to other people,
and you did it, in a way, in between
a minor release. To people familiar
with semantic versioning, what
you just described was a non-back-
ward-compatible major version
change: “We used to produce data
in this form, and now we produce
it in this non-backward-compatible
other form.”

And so, don’t do that. What you can
do is what Chris said. There are lots
of ways to make backward-com-
patible changes. You can add an

optional field — we’d need to talk
about it in a little more detail, sad-
ly. But the idea is that, as a service
owner, your primary job is never to
break the people that use your ser-
vice. So you are never allowed to
break clients, which are consumers
of your events.

Q: Deciding boundary contexts
for microservices could be as
easy as having orders, and then
there could be five types of
orders, and then the microser-
vices becomes a monolith after
a while. How do you decide on
a boundary context so that it is
still good enough after a couple
of years?

Louis Ryan: Mostly, it is probably
going to be informed by your de-
velopment practice in your devel-
opment divisions, rather than any
strict semantic thing you would try
to guess from the get-go. I tend to
think of microservices as emergent
patterns that come out of the need
for decoupling. Usually, the decou-
pling works at development-team
boundaries pretty well, or at func-
tional responsibilities within de-
velopment teams. That’s where I
would start.

Richardson: I would sort of say this
is one of the hardest problems, and
it is really not specific to microser-
vices. Another way of rephrasing it
is “What are the boundaries of my
module?” And I think picking mod-
ule boundaries is difficult.

Unfortunately, there is no mechan-
ical process that, if you apply it, will
come up with a perfect set of mod-
ule boundaries. In the case of ser-
vices, most of them are organized
around particular business objects,
like order management and cus-
tomer management and so on. But
that is your first guess, and you go
with that, and if later on, you find
out that some services got too big,
then hopefully at that point there is

The panelists were:
• Chris Richardson, the author of POJOs in Action and founder

of the original Cloud Foundry, an early Java PaaS for Amazon
EC2

• Randy Shoup, a 25-year veteran of Silicon Valley, currently VP
Engineering at Stitch Fix

• Louis Ryan, a core contributor to Istio and gRPC and a princi-
pal engineer at Google

• Roopa Tangirala, leader of the Cloud Database Engineering
team at Netflix

• Rafael Schloming, co-founder and chief architect of Datawire

The session was recorded live as the panelists took questions from
the audience. We’ve lightly edited the transcript.

24

a clear-enough boundary between the two
internal parts of that module to let you split
it in a meaningful way.

The point of a service is to enable a small
team of developers to deliver rapidly and
safely. And so if a service gets too big, that
really means the team that is developing it
has gotten too big, and they are weighed
down by communication overhead. And so
you kind of want to split the team, and you
want to split the code, so they can go back
to being small, nimble teams again.

Shoup: Probably, if you are a five-person
startup, you might not want to start with
microservices. Part of the why is that it is still
a little bit complicated, maybe a lot com-
plicated, to build a distributed system and
everyone’s questions are around things that
are complicated. When you are small, you
want to start off doing something different.
And another part of it is you want to under-
stand your domain and be able decompose
it in a reasonable way before you do micro-
services, because microservices are just a
physical manifestation of a decomposition
of your domain. So I have found, because
I have tried and failed to do it many times,
that my first cut at a new problem and figur-
ing out the decomposition of the domain is
messed up all the time. And I have gray hair/
no hair; I have been doing this for a while.

There are two rare exceptions to the rule of
maybe don’t start with microservices when
you are tiny. The first is if your MVP requires
scale. So, if you are building the Heroku
competitor, for example, you are building
internet infrastructure, so you’d better scale
from the beginning. That’s a requirement.
And the second is if you know your domain
super well. One great example is people
building new banks. Nubank from Brazil,
who gave the first talk yesterday in the Ar-
chitectures You Always Wondered About
track, started with microservices. Why? Be-
cause the decomposition of the banking
domain we have known for the last 50 years,
the components of the bank, are really well
understood. But the rest of us, we don’t
know the domain well enough, and that is
why this is such an important problem.

http://bit.ly/2tTAQvo

2018 Microservices // eMag Issue 59 - Mar 2018 25

Q: We know that we’re a mono-
lithic application, and we know
that we want to get to busi-
ness-context-type services.
But where does that line get
drawn? Is it a product level, an
API level, a microservice level?
Is it just what feels right?

Rafael Schloming: That is a hard
question, but I think one of the
ways to, sort of, think about it is
actually something Randy said
earlier, which is don’t think about
the size of a microservice in terms
of its lines of code, think about
the scope. And how do you de-
fine scope? Well, you need to un-
derstand what it is you are trying
to achieve at a high level, in one
or two sentences.

It is really a negotiation between
the user of a service and the team
that delivers that service. You
need to track the usage; if your
users are happy, then you’re done.
It really helps to think in terms of
that framing, understanding who
the user of the service is, and go-
ing from there. And, from that
perspective, you can just try a lot
of different kinds of APIs that will
sort of serve the same mission
and figure out what you need.
And, again, you can track how
successful you’re making your
users in order to measure your
progress as you iterate through
the difficult design space.

Shoup: So this is a little bit of a flip
response, but I don’t mean it in
any aggressive way. Do you guys
build one class, like one language
class in Java or whatever? How do
you know what the scope of the
classes are? That’s a design thing.
The class is a single responsibili-
ty; we try to make the interface
minimal and try not to be chatty.
The reason we ask it that way is
not to put you on the spot, and
the people that are working for
me are laughing right now: this
is a thing that I have done many

times with my team, where this is
a legit thing to say.

That’s the answer. You know more
than you think about how to de-
sign services. If you know how to
design classes, for the most part
you know how to design services.
The only part is recognizing that
you cannot be as chatty with ser-
vices as you can be with some-
thing that is in process.

Richardson: Decomposition ap-
plies at many levels. In a sense,
you decompose methods, class-
es, packages, and modules, and
so the microservices is just yet
another level in that kind of hi-
erarchy. One comment I would
add is that I think microservices
kind of have this important rela-
tionship with team structure as
well. I think there are two mod-
els for microservices. There is this
super fine-grain model, which is
one service per developer, that
seems to be happening at some
companies. Or when you have
thousands of services — that or-
der of magnitude. Another way
of thinking about services is as a
small enough “application” that
its team can remain nimble and
agile. That is a much coarser-grain
model of microservices. And so
that impacts decomposition.

Ryan: I think it is probably a com-
mon problem for a lot of people in
the room, that they have a mono-
lith yak that they want to shave,
and that is totally fine. Start shav-
ing where you think shaving adds
value, and stop shaving where
you are not getting any more val-
ue. It is okay to have a monolith if
it is doing what it is supposed to
do. I know that might be heresy
here, but if it is doing what it is
supposed to do, why touch it? If it
is not, shave it, and iterate.

Shoup: A related, excellent ques-
tion is, more or less, are microser-
vices worth it? And the answer,

for most of us, is maybe not. As I
tried to say in my talk, it is the 0.1
percent, or 0.01 percent that get
really large, where you absolute-
ly need them — there is no way
Google, Amazon, Netflix, Stitch
Fix work without microservices.
But if you don’t have a huge load,
it is fine to stick with a monolith.
When should you go with micro-
services? Well, when are you un-
able to scale things independent-
ly, when does it slow down, when
do things evolve at different
rates? That’s the wall that you
have to scale with microservices.

Richardson: And I want to add
to that. If your development ve-
locity is not where it needs to be,
I would actually start to review
your development practices be-
fore switching to microservices.
So, for instance, if you are not do-
ing automated testing thorough-
ly, and I think probably 70-plus
percent of organizations, accord-
ing to a SourceLab report, have
not completely embraced auto-
mated testing. So if you are one
of those, work on that first. And
then, you know, once you have
the hang of that and you really
are able to automate as much as
possible, then think about the mi-
croservice architecture. It is kind
of like try walking before you run.

Schloming: That’s a great point,
and a great thing to do is just — it
doesn’t need to be super heavy-
weight — to track where you
spend your time. If you are doing
lots of manual testing and that
is slowing you down, you don’t
necessarily think about that on a
day-to-day basis. And, you know,
if you are spending a lot of time
wrestling with particular areas of
your monolith, maybe that’s the
time you should start shaving
that particular patch of yak.

Ryan: So I think Randy gave a
couple examples of why you
might want to do that, scale be-

2018 Microservices // eMag Issue 59 - Mar 201826

ing one of the more obvious ones
that is quoted in the industry.
I think there are other reasons;
security is a big reason why you
might want to shave your mono-
lith, because you have two things
that should not be stuck together
in the same trust domain. That’s
a big reason. The development
experience is clearly one; release
velocity is a big deal. So there’s a
variety of reasons out there. You
know your domain, you know
what is going on in your domain,
you should be able to reason
about those types of decisions.

Richardson: From my perspec-
tive. I think that microservices are
primarily a way to tackle complex-
ity rather than scale. Obviously, it
is a way to scale, but complexity
is first.

Q: Can you guys comment on
what patterns teams are using
to get to microservices? Do I
start in the middle where it re-
ally matters with an important
object or do I do it on the side
where it doesn’t make a big dif-
ference? Can I just slap a REST
API on an existing app and call
it a microservice?

Richardson: Well, you know, if
your yearly bonus depends on
having a microservice…. This
term “microservice” really does
get heavily abused, right? “Can we
use a microservice for that” is just
kind of the wrong notion, from
my perspective. Microservice is
shorthand for the microservice
architecture, which is an architec-
ture style for an application; it is
all about having a system.

Say you have this massive mono-
lith, and there is one part of it
that is under very, very active de-
velopment and another part that
you never touch, and you want to
extract them out. If you want to
build a microservice or a service,

then extract out the parts of your
application that are frequently
changing. Because that will give
you the biggest bang for the
buck.

Think about your monolith that
is on the slow track of develop-
ment, and everything that you
extracted out of the microservice
is on the fast track, the rapid de-
ploys and all of that. So you want
to invest the effort in those areas
that really, really make a differ-
ence.

Shoup: I’m going to make some
architectural change from the
monolith to the microservices.
So I want to prove that this fancy
millennial way of doing a micros-
ervice is actually a thing and will
work in our environment. So step
zero is to do a pilot. And the way
I would like to think about that is
to take a vertical, end-to-end ac-
tual experience that matters to
our business.

Let’s imagine that you have
something that actually matters
to users and you want to build
that in a new way. It could legit-
imately be a new thing you will
build a new way or an old thing
that exists that you will rebuild in
a new way. Either way, take a ver-
tical end-to-end thing and build
it in a new way.

Why? We are building a pilot, we
want to de-risk it and we want to
learn all the things we don’t know
about the microservice thing. We
are doing it as a pilot rather than
building the entire infrastructure.
We do a vertical end-to-end user
experience because we want to
be able to be focused on some
particular thing and that tells us
what we need to do and don’t
need to do. If we choose some-
thing that doesn’t matter, we
don’t know what is in or out. If we
choose something that is actu-
ally useful, then that will help us

to focus on the minimal thing we
need to do to get our job done.
And the other reason we choose
something useful is if that doesn’t
work, at the worst we have pro-
vided some value to our custom-
ers.

So that’s the step zero, that pilot.
And now that that pilot is suc-
cessful, and we have learned all
of these things about how to do
things in a new way, then we will
call it “microservices”. The steps
1 to N are to take the things that
have the highest return on invest-
ment — not the easiest things,
not necessarily the hardest
things, but the things that have
the highest return on investment
and we convert those to the new
way first.

So think about the areas that are
really fast-changing, maybe that
have the highest ROI, or the part
of the site with the highest rev-
enue — that would be a place
where it would be valuable to
move faster to make more rev-
enue. You did the pilot, you de-
risked it, and then you do the
highest ROI, and then the sec-
ond and third highest, and you
keep going until you run out of
patience or resources. And if you
run out before you are done, that
is cool, because the monolith that
still exists is something that you
don’t care too much about. There
wasn’t the ROI, it didn’t go above
the bar of what it would take for
you to, you know, get motivated
to convert it to microservices.

That is exactly what eBay did.
eBay had this monster C++
monolith and they broke it into
many applications written in Java.
So it wasn’t microservices, but the
principle is the same. Once they
did the pilot and they convinced
themselves that Java could work
in the eBay infrastructure with
the skill set and people and all
that kind of stuff, they basically

2018 Microservices // eMag Issue 59 - Mar 2018 27

reverse-sorted the site — they
took the pages on the site and re-
verse-ordered them by revenue
contribution. So they converted
first the top-revenue pages, not
because they desperately wanted
to have the greatest risk but if and
when they ran out of patience,
money, or resources, they had the
most valuable things done.

They had started the re-architec-
ture in 2000 or 2002 or something
like that, and they had mostly fin-
ished by, I want to say, 2007 or
2006. It took a while, and even
after I left in 2011, there were still
things that were on that v2 C++
monolith architecture, but they
were things that nobody used;
they were simple, they didn’t
change. So there was no ROI to
convert them to the new way.

Q: My question is about the
communication between
microservices. We talk about
having events, so service A
talks to service B. For a busi-
ness-critical service like cred-
it-card processing, we see lot
of patterns by Kafka or other
brokers once the message is in
the broker, and there are ways
to recover or retry. But what’s
the recommendation to ensure
that the credit-processing
service does issue the event?
Kafka now has Kafka Connect,
which can publish every data-
base commit or every database
transaction straight to Kafka.
What if the business object is
not the same as what you have
in the database?

Tangirala: In terms of services,
each application service is the
source of truth for the data it is
serving. So, for payments pro-
cessing, in Netflix’s case, they
don’t use Kafka, they have dif-
ferent payments stores. They are
using transactional data stores
for that payment processing. But

basically the idea is that each
service is owning the piece of
data it is responsible for, and it is
the source of truth for that. That
is how the interactions happen:
other services will ask the service
instead of directly either copying
the dataset or having multiple
copies in their back end.

Richardson: There are several
parts to it. One is atomically pub-
lishing a message when the data
changes. So, conceptually, there’s
a transaction involved in updat-
ing the database and publishing
a message. There’s a whole thing
around transactional messaging,
which is kind of a super inter-
esting topic. And so, it ends up
reliably being published to the
message broker. That’s step one.
In step two, your message bro-
ker has to be reliable. That’s what
Randy was talking about with at-
least-once delivery. And at the
consumer end, you need idempo-
tent event or message handling
to ensure the correct semantics,
and that includes keeping track
of all of the message IDs you have
seen. It is a whole complex topic,
some of which I cover in my book,
Microservice Patterns — shame-
less plug.

Schloming: This area of owner-
ship is like designing classes —
ownership and the whole area of
communication and this whole
event thing. That is where you
are transferring responsibility for
ownership of some data. And
that is where microservices get
the most different from design-
ing classes, or one of the areas
they get the most different from
designing traditional class APIs,
because you don’t have this same
locality of data in the context of a
class hierarchy. So it is just some-
thing to keep an eye out for.

Q: Related to event-driven ar-
chitecture, can you share your
thoughts from the panel on
the use of either pass by value
or pass by reference on those
messages, how the consumers
work with that message, and
maybe your thoughts on how
to handle ordering those?

Ryan: I can give my opinion,
which might also be slightly he-
retical here, but this is influenced
by Google scale. We mostly don’t
do it. Most service-to-service
communication is not reconciled
through a broker. We use things
like retries and network-level
things to get scale by not hit-
ting storage. So again, it is one of
the scale questions. If persistent
queues in storage give you reli-
ability that you need at your ap-
plication level at scale, then you
should use it. And, I think, at cer-
tain scales, some of the patterns
might become a little bit more
limiting, particularly depending
on the amount of work waiting
for that. So it is not that we’re
anti that pattern, per se; we do
use that pattern, and we use that
pattern encapsulated behind an
API with a clear segmentation of
responsibility. But, for the most
part, we don’t do it. We don’t do
rendezvous or that type of thing.

Richardson: I can’t believe you
don’t use Kafka.

Ryan: We have things that look
like it.

Richardson: But Kafka seems
fashionable.

Ryan: So I hear.

Richardson: Rightly or wrongly.
So when we have been talking
about events, in my brain I have
translated that into domain
events, which are a concept from
domain-driven design (DDD).
One of the DDD books, Imple-

https://www.amazon.com/gp/product/1617294543/ref=x_gr_w_bb?ie=UTF8&tag=x_gr_w_bb-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1617294543&SubscriptionId=1MGPYB6YW3HWK55XCGG2
https://vaughnvernon.co/?page_id=168#iddd

2018 Microservices // eMag Issue 59 - Mar 201828

menting DDD by Vaughn Vernon,
has a chapter on domain events
that includes a discussion of how
much data you you should have
in an event, you have a choice. If
an order is created, you can pub-
lish the order ID, but that is of
no use to the consumer because
they have to get the order. So
there’s the concept of event en-
richment, which says to put data
that is useful to the consumer in
the event. And when you publish
an order-created event, stuff the
order details in there. And when
you are using event sourcing,
where your events are your stor-
age mechanism for your domain
objects, you have no choice ex-
cept to put the necessary data in
there.

And your other point was order-
ing. I think ordered, at least once,
delivery of domain events is re-
ally, really important, because if
they arrive out of order, then you
are going to have pretty weird be-
havior. And I mean, there might
be other situations where you
don’t care about delivery and you
can just pub/sub an event, but or-
dering is usually quite important.

Shoup: You asked THE question,
which is how I deal with event
delivery when I might get the
thing multiple times, and how
do I deal with event ordering? So
both of those things you don’t
have in-process but with messag-
ing across a distributed system
you have those problems. I keep
threatening to do an event mas-
ter class.

So, again, on delivery, you can
have at most once or at least once.
If you care about your event, you
want at least once. So that is on
failure; I deliver it two times, three
times, N times. At most once is
basically for logging data, things
that on failure you want to drop.
Domain events do not fall into
that category, but logging things

are. That’s the first thing, and then
you have this multiple times, and
then you have to be idempotent;
the consumer has to be able to
correctly process the same event
multiple times. CRDTs is some-
thing you should look into if you
are kept up at night by these
problems.

And there are several ways to
deal with event ordering. You can
deal with ordering in the bus —
blecch, that is not so great. The
other way to deal with it is to
have events be the notification
of a thing happening and then
you go and read back to the ser-
vice that produced the event for
the current state of things. These
are all legit ways of handling a
problem, and think about these
answers — there’s Randy’s way
to do it versus Chris’s way to do
it versus Louis’s. Think about that:
there’s a space of solutions to this
problem, and don’t take away
from it that it’s solved by reason-
ing with first principles

Martin Fowler of refactoring
fame gave a wonderful key-
note at GOTO Chicago 2017 on
event-driven architecture. And he
does, in his wonderful way, very
clearly, discuss the pros and cons
of events as notification, events
that carry the data with them,
event sourcing, etc.

Ryan: I want to throw in a cau-
tionary tale, not necessarily a par-
able, I gave a talk earlier on super-
powers: beware of superpowers.
Event brokers are superpowers.
Be careful when you put things
into queues when you don’t know
where or how they are going to
come out, or who they will come
out to. If you don’t know the an-
swers to those questions, you
shouldn’t put those things into a
queue until you can answer the
questions. If you have data that
you care about or your users care
about, you need to reason about

those things to some degree. And
event brokers have been pitched
as a way to give operators control
so they can answer those ques-
tions or validate that.

Q: When the Web started, ev-
eryone was writing interesting
apps. Then came Rails and MVC
and Rust and people started
writing those, and then we
had monolithic scales slow
us down. Now microservice
is the buzzword. You cannot
walk into a company and not
hear the word “microservices”.
What are some things that you
foresee after the microservice
trend saturates? What is next?
Microfunctions?

Ryan: Didn’t that already hap-
pen?

Shoup: The meta answer is look
at what Google, Amazon, and
Netflix are doing now. Meaning
no shame, I will be flip: if you are
asking that question, you are
years behind these people. And
that’s a good thing. You can look
at what these larger architectures
are sharing.

Richardson: At some level,
there’s a limit beyond which it
doesn’t meaningfully make sense
to decompose a module. Go back
to some of the classic work in
object-oriented design like the
common-closure principle: the
things that change for the same
reason should be packaged to-
gether. And that means, if you
decompose a package into two
packages — and, really, you have
split this business concept across
those two packages — then
whenever that business concept
changes, you are changing both
of those packages. So you are go-
ing to see this lockstep.

So certainly, to me, there’s an an-
ti-pattern in the microservice ar-
chitecture, the distributed mono-

https://vaughnvernon.co/?page_id=168#iddd
https://www.youtube.com/watch?v=STKCRSUsyP0
https://www.youtube.com/watch?v=STKCRSUsyP0

29

lith, where you are really releasing multiple
services simultaneously because of that. So
that’s one part which is, sort of, from a logical
perspective.

And then, from just sort of nuts-and-bolts
technical thing, you can certainly say that
when it comes to deployment, our unit of de-
ployment has been getting increasingly light-
er and more ephemeral. So, 10 or 15 years
ago, if you wanted to deploy something, you
had to get a physical machine. And now you
just deploy a lambda on AWS — and in such
a short amount of time, that’s been a radical
transformation in how we deploy things. And
so that, to me, is one kind of huge trend. And
even from a design point of view, there’s this
common-closure principle that you have to
keep in mind.

Schloming: There’s a way I like to think about
this question that is very complementary
with this but from a different perspective,
and that is thinking about the trends in terms
of how many people you need to accomplish
something. If you look at the transition from
monolith to microservices through the orga-
nizational lens, it is a shift in the division of
labor. You are taking the output of a team, an
engineering team of thousands of people,
and you are fundamentally assembling the
output of that work in a different way into a
single, coherent whole. Look at 10 years ago,
the size of a team it took to deliver a given
service. Today, a teenager could do the same
thing out of his parents’ basement in a week-
end, at least close to that.

And so I think that the limit of this really
comes down to the point where that team
size can effectively stop shrinking. It is how
much a single developer can absorb and ac-
complish, until you throw in something like
AI, which I’m sure people are doing now.

Richardson: Can I just respond? One thing
that is interesting is I don’t know whether
the productivity of an individual developer
writing code has improved. Like, writing and
creating brand-new code. So I look back and,
some things have changed. Like machines
have gotten faster and bigger, and if we are
stuck, there is Google or Stack Overflow. And
then there’s all of this open-source stuff, so we
can quickly assemble a bunch of libraries to-
gether, and if we get stuck, we Google the an-

http://bit.ly/2tOb1Nf

2018 Microservices // eMag Issue 59 - Mar 201830

swer. But, in terms of writing code
from scratch, I feel like it is an indi-
vidual developer muddling along
somehow, scratching their head.
And, if that hasn’t changed, we
have not had a Moore’s law for
software development in that re-
gard.

Ryan: So if we are in the realm of
predictions, I think some of the
answers are sitting outside in the
vendor booths. More and more of
your code is running on the same
network, and I’m not meaning
only yours, I mean all of you at
the same time. You are all putting
your code into big cloud vendors;
it is much more local with every-
one else in this room than it was
before. So we have this interest-
ing networking effect. Microser-
vices are not just a way for you to
build services. It is also a way for
you to consume services that oth-
er people have built for you.

When I look out there and I see
vendors selling certain types of
services, the thing that strikes me
is that they’re smaller versions of
things that bigger vendors used
to sell. I look at the APM space
when I see that. And you will see
the trend continue when there
are more micro-vendors; there
will be more marketplaces that
help you acquire services that
can do interesting things. Some-
body asked about geolocation.
You can buy that as a service. It is
a tiny little service; it does very lit-
tle in terms of an API and a huge
amount in terms of the back end.
So that is one thing that we might
expect to see going forward.

Schloming: I think that those
two answers spark a lot. I don’t
think a developer writes more
lines of code, but they are way
more productive because they
figure out how to assemble a lot
of things — and the other things
or what Louis just mentioned are

examples of that marketplace of
other things to assemble.

Q: When I log into an applica-
tion like Netflix, it is a pretty
frictionless user experience.
I log in once and I don’t get a
sense that I’m logging into the
microservice for my user pro-
file, customer history, etc. How
do you maintain this friction-
less UI in microservices archi-
tecture? Most of us are writing
applications that span multiple
services but it is really just one
application users are trying to
go to. How do I maintain the
advantages of a share-noth-
ing architecture where I can
deploy independently with-
out dependencies between
services yet maintain a user
experience that is frictionless,
unified, and with a consistent
look and feel?

Tangirala: So, there are different
tiers in the microservice layer.
There is a front-end tier, which
takes all the user traffic, and then
we have a middle tier and back-
end tier, which are your mem-
bership and all the core services
that give that data set to you. And
so, in terms of the UI integration,
there is a lot of interaction be-
tween these services, but at any
given time the source of truth is
just one service.

I don’t have a lot of insights into
the UI layer. But our UI team does
a great job in making sure all the
interactions between these mi-
croservices and the results that
they are getting in the UI are
seamless. There’s a lot of work
that goes on behind the scenes,
but each microservice is not re-
lated to the other. That way, you
know which service to call.

Though there’s a lot of interac-
tion, you have fallbacks as well.
From the UI point of view, you

don’t see that you are having a
degraded experience. If you are
not able to get your personalized
list of movies to watch from that
service, if you cannot go to that
service, then they may fall you
back to a fallback page. So you
might not experience degraded
service; you do not think you are
not seeing your active list of mov-
ies as the service is giving you the
fallback experience.

2018 Microservices // eMag Issue 59 - Mar 2018 31

http://bit.ly/2FEfFTz
http://bit.ly/2pdv2I9

2018 Microservices // eMag Issue 59 - Mar 201832

Managing Data
in Microservices
Adapted from a presentation at QCon
San Francisco 2017, by Randy Shoup, VP
of engineering at Stitch Fix

KEY TAKEAWAYS
Stitch Fix, a clothing retailer, employs nearly

as many data scientists as engineers. The data
scientists work on algorithms critical to the

company’s success, and require a substantial
amount of data to succeed.

Although microservices may be necessary for
achieving a highly scalable solution, do not start

with the complexity of a highly distributed system
until the company is successful enough that

microservices become justified and necessary.

All major companies that are now using
microservices, including eBay, Twitter, and Amazon.

com, have gone through a migration that started
with a monolithic system.

A true microservices platform requires each
microservice to be responsible for its own data.
Creating separate data stores can be the most

challenging aspect of a microservices migration.

The process for separating out a monolithic
database involves a repeatable process of isolating

each service’s data and preventing direct data
access from other services.

Watch presentation online on InfoQ

I’m Randy Shoup, VP of engineering at Stitch
Fix, and my background informs the follow-
ing lessons about managing data in micros-
ervices.

Stitch Fix is a clothing retailer in the United
States, and we use technology and data sci-
ence to help customers find the clothing they
like. Before Stitch Fix, I was a roving “CTO as a
service”, and I helped companies discuss tech-
nologies and these situations.

https://www.infoq.com/presentations/microservices-managing-data?utm_source=infoq&utm_medium=Microservices-eMag&utm_campaign=internal

2018 Microservices // eMag Issue 59 - Mar 2018 33

Earlier in my career, I was director
of engineering at Google for Goo-
gle App Engine. That is Google’s
platform as a service, like Heroku,
or Cloud Foundry, or something
like that. Earlier, I was chief en-
gineer for about six-and-a-half
years at eBay, where I helped
our teams build multiple gener-
ations of search infrastructure.
If you have ever gone to eBay
and found something that you
liked then, great, my team did a
good job. And if you didn’t find it,
well, you know where to put the
blame.

Let me start with a little bit about
Stitch Fix, because that informs
the lessons and the techniques
of our breaking monoliths into
microservices. Stitch Fix is the re-
verse of the standard clothing re-
tailer. Rather than shop online or
go to a store yourself, what if you
had an expert do it for you?

We ask you to fill out a really de-
tailed style profile about yourself,
consisting of 60 to 70 questions,
which might take you 20 to 30
minutes. We ask your size, height,
weight, what styles you like, if
you want to flaunt your arms, if
you want to hide your hips… —
we ask very detailed and person-
al things. Why? Anybody in your
life who knows how to choose
clothes for you must know about
you. We explicitly ask those
things, and use data science to
make it happen. As a client, you
have five items we deliver to your
doorstep, hand-picked for you by
one of 3,500 stylists around the
country. You keep the things that
you like, pay us for those, and re-
turn the rest for free.

A couple of things go on behind
the scenes among both humans
and machines. On the machine
side, we look every night at every
piece of inventory, reference that
against every one of our clients,
and compute a predicted proba-

bility of purchase. That is, what is
the conditional probability that
Randy will keep this shirt that we
send him. Imagine that there’s a
72 percent chance that Randy will
keep this shirt, 54 percent chance
for these pants, and 47 percent
chance for the shoes — and for
each of you in the room, the per-
centages are going to be differ-
ent. We have machine-learned
models that we layer in an en-
semble to compute those per-
centages, which compose a set of
personalized algorithmic recom-
mendations for each customer
that go to the stylists.

As the stylist is essentially shop-
ping for you, choosing those five
items on your behalf, he or she is
looking at those algorithmic rec-
ommendations and figuring out
what to put in the box.

We need the humans to put to-
gether an outfit, which the ma-
chines are currently not able
to do. Sometimes, the human
will answer a request such as
“I’m going to Manhattan for an
evening wedding, so send me
something appropriate.” The ma-
chine doesn’t know what to do
with that, but the humans know
things that the machines don’t.

All of this requires a ton of data.
Interestingly and, I believe,
uniquely, Stitch Fix has a one-to-
one ratio between data science
and engineering. We have more
than a hundred software engi-
neers in the team that I work on
and roughly 80 data scientists
and algorithm developers that
are doing all the data science. To
my knowledge, this is a unique
ratio in the industry. I don’t know
any other company on the planet
that has this kind of near one-to-
one ratio.

What do we do with all of those
data scientists? It turns out, if you
are smart, it pays off.

We apply the same techniques to
what clothes we’re going to buy.
We make algorithmic recommen-
dations to the buyers and they
figure out that, okay, next season,
we’re going to buy more white
denim or cold shoulders are out
or Capri pants are in next.

We use data analysis for inven-
tory management: what do we
keep in what warehouses and so
on. We use it to optimize logistics
and selection of shipping carriers
so that the goods arrive on your
doorstep on the date you want,
at minimal cost to us. And we do
some standard things, like de-
mand prediction.

We are a physical business: we
physically buy the clothes, put
them in warehouses, and ship
them to you. Unlike eBay and
Google and a bunch of virtual
businesses, if we guess wrong
about demand, if demand is dou-
ble what we expect, that is not
a wonderful thing that we cele-
brate. That’s a disaster because
it means that we can only serve
half of the people well. If we have
double the number of clients, we
should have double the number
of warehouses, stylists, employ-
ees, and that kind of stuff. It is
very important for us to get these
things right.

Again, the general model here is
that we use humans for what the
humans do best and machines
for what the machines do best.

When you design a system at this
scale, as I hope you do, you have a
bunch of goals. You want to make
sure that the development teams
can continue to move forward in-
dependently and at a quick pace
— that’s what I call “feature veloc-
ity”. We want scalability, so that as
our business grows, we want the
infrastructure to grow with it. We
want the components to scale to
load, to scale to the demands that

2018 Microservices // eMag Issue 59 - Mar 201834

we put on them. Also, we want
those components to be resilient,
so we want the failures to be iso-
lated and not cascade through
the infrastructure.

High-performing organizations
with these kinds of require-
ments have some things to do.
The DevOps Handbook features
research from Gene Kim, Nicole
Forsgren, and others into the dif-
ference between high-perform-
ing organizations and lower-per-
forming ones. Higher-performing
organizations both move faster
and are more stable. You don’t
have to make a choice between
speed and stability — you can
have both.

The higher-performing organiza-
tions are doing multiple deploys
a day, versus maybe one per
month, and have a latency of less
than an hour between commit-
ting code to the source control
and to deployment, while in oth-
er organizations that might take a
week. That’s the speed side.

On the stability side, high-per-
forming organizations recover
from failure in an hour, versus
maybe a day in a lower-perform-
ing organization. And the rate of

failures is lower. The frequency of
a high-performing organization
deploying, having it not go well,
and having to roll back the de-
ployment approaches zero, but
slower organizations might have
to do this half the time. This is a
big difference.

It is not just the speed and the
stability. It is not just the techni-
cal metrics. The higher-perform-
ing organizations are two-and-a-
half times more likely to exceed
business goals like profitability,
market share, and productivity.
So this stuff doesn’t just matter to
engineers, it matters to business
people.

Evolving to
microservices
One of the things that I got asked
a lot when I was doing my roving
CTO-as-a-service gig was “Hey,
Randy, you worked at Google and
eBay — tell us how you did it.”

I would answer, “I promise to tell
you, and you have to promise not
to do those things, yet.” I said that
not because I wanted to hold onto
the secrets of Google and eBay,
but because a 15,000-person en-
gineering team like Google’s has

a different set of problems than
five people in a startup that sit
around a conference table. That
is three orders of magnitude dif-
ferent, and there will be different
solutions at different scales for
different companies.

That said, I love to tell how the
companies we have heard of
have evolved to microservices —
not started with microservices,
but evolved there over time.

eBay
eBay is now on its fifth complete
rewrite of its infrastructure. It
started out as a monolithic PERL
application in 1995, when the
founder wanted to play with this
thing called the Web and so spent
the three-day Labor Day week-
end building this thing that ulti-
mately became eBay.

The next generation was a mono-
lithic C++ application that, at its
worst, was 3.4 million lines of
code in a single DLL. They were
hitting compiler limits on the
number of methods per class,
which is 16,000. I’m sure many
people think that they have a
monolith, but few have one
worse than that.

The third generation was a rewrite
in Java — but we cannot call that
microservices; it was mini-appli-
cations. They turned the site into
220 different Java applications.
One was for the search part, one
for the buying part… 220 appli-
cations. The current instance of
eBay is fairly characterized as a
polyglot set of microservices.

Twitter
Twitter has gone through a sim-
ilar evolution, and is on roughly
its third generation. It started as
a Rails application, nicknamed
the Monorail. The second genera-
tion pulled the front end out into

http://bit.ly/2tTAQvo

2018 Microservices // eMag Issue 59 - Mar 2018 35

JavaScript and the back end into
services written in Scala, because
Twitter was an early adopter. We
can currently characterize Twitter
as a polyglot set of microservices.

Amazon.com
Amazon.com has gone through
a similar evolution, although not
as clean in the generations. It be-
gan as a monolithic C++ and Perl
application, of which we can still
see evidence in product pages.
The “obidos” we sometimes see
in an Amazon.com URL was the
code name of the original Ama-
zon.com application. Obidos is
a place in Brazil, on the Amazon,
which is why it was named that
way.

Amazon.com rewrote every-
thing from 2000 to 2005 in a ser-
vice-oriented architecture. The
services were mostly written in
Java and Scala. During this peri-
od, Amazon.com was not doing
particularly well as a business.
But Jeff Bezos kept the faith and
forced (or strongly encouraged)
everyone in the company to re-
build everything in a service-ori-
ented architecture. And now it’s
fair to categorize Amazon.com as
a polyglot set of microservices.

These stories all follow a common
pattern. No one starts with micro-
services. But, past a certain scale
(a scale that maybe only .1 per-
cent of us is going to get to), ev-
erybody ends up with something
we can call microservices.

I like to say that if you don’t end
up regretting your early tech-
nology decisions, you probably
over-engineered.

Why do I say that?

Imagine an eBay competitor or
Amazon.com competitor in 1995.
This company, instead of finding
a product market fit, a business

model, and things that people
are going to pay for, has built a
distributed system they are going
to need in five years. There is a
reason we have not heard of that
company.

Again, think about where you are
in your business, where you are in
your team size. The solutions for
Amazon.com, Google, and Netflix
are not necessarily the solutions
for you when you are a small
startup.

Microservices
I like to define the micro in micro-
services as not about the number
of lines of code but about the
scope of the interface.

A microservice has a single pur-
pose and a simple, well-defined
interface, and it is modular and
independent. The critical thing to
focus on and explore the impli-
cations of is that effective micro-
services, as Amazon.com found,
have isolated persistence. In oth-
er words, a microservice should
not be sharing data with other
services.

For a microservice to reliably ex-
ecute business logic and to guar-
antee invariance, we cannot have
people reading and writing the
data behind its back. eBay dis-
covered this the other way. eBay
spent a lot of effort with some
very smart people to build a ser-
vice layer in 2008, but it was not
successful. Although the services
were extremely well built and the
interfaces were quite good and
orthogonal — they spent a lot of
time thinking about it — under-
neath them was a sea of shared
databases that were also directly
available to the applications. No-
body had to use the service layer
in order to do their job, so they
didn’t.

No one starts with
microservices. But,
past a certain scale,
everyone ends up
with microservices.

If you don’t end up
regretting your early
technology decisions,
you probably
over-engineered.

2018 Microservices // eMag Issue 59 - Mar 201836

At Stitch Fix, we are on our own
journey. We did not build a mono-
lithic application, but our version
of the monolith problem is the
monolithic database we built.

We are breaking up our mono-
lithic database and extracting
services from it but there are
some great things that we would
like to retain.

Figure 1 shows a simplified view
of our situation. We have way
more than this number of apps,
but there are only so many things
that fit in one image.

We essentially have a shared da-
tabase that includes everything
that is interesting about Stitch
Fix. This includes clients, the box-
es that we ship, the items that
we put into the boxes, metadata
about the inventory like styles
and SKUs, information about the
warehouses, times about 175
different tables. We have on the
order of 70 or 80 different appli-
cations and services that use the
same database for their work.
That is the problem. That shared
database is a coupling point for
the teams, causing them to be
interdependent as opposed to

independent. It is a single point
of failure and a performance bot-
tleneck.

Our plan is to decouple appli-
cations and services from the
shared database. There is a lot of
work here.

Figure 2 shows the steps taken to
break up shared database. Image

A is the starting point. The real
diagram would be too full of box-
es and lines, so let’s imagine that
there are only three tables and
two applications. The first thing
that we’re going to do is build a
service that represents, in this ex-
ample, client information (B). This
will be one of the microservices,
with a well-defined interface. We
negotiated that interface with
the consumers of that service be-
fore we created the service.

Next, we point the applications
to read from the service instead
of using the shared database
to read from the table (C). The
hardest part is moving the lines.
I do not mean to trivialize, but an
image simply cannot show how
hard it is to do that. After we do
that, callers no longer connect
directly to the database but will
instead go through the service.
Then we move the table from the
shared database and put it in an
isolated private database that is
only associated with the micro-
service (D). There’s a lot of hard
work involved, and this is the pat-
tern.

Figure 1: Stitch Fix’s Monolithic, shared database.

Figure 2: Breaking up the shared database.

2018 Microservices // eMag Issue 59 - Mar 2018 37

The next task is to do the same
thing for item information. We
create an item service, and have
the applications use the service
instead of the table (E). Then we
extract the table and make it a
private database of the service.
We then do the same thing for
SKUs or styles, and we keep rins-
ing and repeating (F). By the end,
the boundary of each microser-
vice surrounds both its applica-
tion box and its database, such
as the paired client-service and
“core client” database (F).

We have divided the monolithic
database with everything in there
so that each microservice has its
own persistence. But there are a
lot of things that we like about
of the monolithic database, and I
don’t want to give them up. These
include easily sharing data be-
tween different services and ap-
plications, being able to easily do
joins across different tables, and
transactions. I want to be able to
do operations that span multiple
entities as a single atomic unit.
These are all common aspects of
monolithic databases.

Events
There are various database fea-
tures that we can and cannot
keep through the next part of the
migration, but there are work-
arounds for those we can’t have.
Before going into that, I need to
point out an architectural build-
ing block that perhaps you know
about but don’t appreciate as
much as you should — name-
ly, events. Wikipedia defines an
event as a significant change in
state or a statement that some-
thing interesting has occurred.

In a traditional three-tier system,
there’s the presentation tier that
the users or clients use, the appli-
cation tier that represents state-
less business logic, and the per-
sistence tier that is backed by a

relational database. But, as archi-
tects, we are missing a fundamen-
tal building block that represents
a state change, and that is what I
will call an event. Because events
are typically asynchronous, may-
be I will produce an event to
which nobody is yet listening,
maybe only one other consumer
within the system is listening to
it, or maybe many consumers are
going to subscribe to it.

Having motivated events to a
first-class construct in our archi-
tecture, we will now apply events
to microservices.

A microservices interface in-
cludes the front door, right? It ob-
viously includes the synchronous
request and response. This is typ-
ically HTTP, maybe JSON, maybe
gRPC or something like that, but
it clearly includes an access point.
What is less obvious — and I
hope I can convince you that this
is true — is that it includes all of
the events that the service pro-
duces, all of the events that the
service consumes, and any other
way to get data into and out of
that service. Doing bulk reads out
of the service for analytic purpos-
es or bulk writes into the service
for uploads are all part of the in-
terface of the service. Simply put,
I assert that the interface of a ser-
vice includes any mechanism that
gets data into or out of it.

Now that we have events in
our toolbox, we will start to use
events as a tool in solving those
problems of shared data, of joins,
and of transactions. That brings
us to the problem of shared
data. In a monolithic database, it
is easy to leverage shared data.
We point the applications at this
shared table and we are all good.
But where does shared data go in
a microservices world?

Well, we have a couple of dif-
ferent options — but I will first

give you a tool or a phrase to use
when you discuss this. The prin-
ciple, or that phrase, is “single
system of record”. If there’s data
for a customer, an item, or a box
that is of interest in your system,
there should be one and only one
service that is the canonical sys-
tem of record for that data. There
should be only one place in the
system where that service owns
the customer, owns the item, or
owns the box. There are going to
be many representations of cus-
tomer/item/etc. around (there
certainly are at Stitch Fix), but ev-
ery other copy in the system must
be a read-only, non-authoritative
cache of that system of record.

Let that sink in: read only and
non-authoritative. Don’t modify
the customer record anywhere
and expect it to stick around in
some other system. If we want to
modify that data, we need to go
to the system of record, which is
the only place that can currently
tell us, to the millisecond, what
the customer is doing.

That’s the idea of the system of
record, and there are a couple of
different techniques to use in this
approach to sharing data. The
first is the most obvious and most
simple: synchronously look it up
from that system of record.

Consider a fulfillment service at
Stitch Fix. We are going to ship a
thing to a customer’s physical ad-
dress. There’s a customer service
that owns the customer data, one
piece of which is the customer’s
address. One solution is for the
fulfillment service to call the cus-
tomer service and look up the
address. There’s nothing wrong
with this approach; this is a per-
fectly legitimate way to do it. But
sometimes this isn’t right. Maybe
we do not want everything to be
coupled on the customer service.
Maybe the fulfillment service, or
its equivalent, is pounding the

2018 Microservices // eMag Issue 59 - Mar 201838

customer service so often that it
impedes performance.

Another solution involves the
combination of an asynchronous
event with a local cache. The cus-
tomer service is still going to own
that representation of the cus-
tomer, but when the customer
data changes (the customer ad-
dress, say), the customer service
is going to send an update event.
When the address changes, the
fulfillment service will listen to
that event and locally cache the
address, then the fulfillment cen-
ter will send the box on its merry
way.

The caching within the fulfillment
service has other nice properties.
If the customer service does not
retain a history of address chang-
es, we can remember that in the
fulfillment service. This happens
at scale: customers may change
addresses between the time that
they start an order and the time
that we ship it. We want to make
sure that we send it to the right
place.

Joins
It is really easy to join tables in a
monolithic database. We simply
add another table to the FROM
clause in a SQL statement and
we’re all good. This works great
when everything sits in one big,
monolithic database, but it does
not work in a SQL statement if A
and B are two separate services.
Once we split the data across mi-
croservices, the joins, conceptual-
ly, are a lot harder to do.

We always have architecture
choices, and there is more than
one way to handle joins. The
first option is to join in the client.
Have whatever is interested in
the A and the B do the join. In this
particular example, let’s imagine
that we are producing an order
history. When a customer comes

to Stitch Fix to see the history of
the boxes that we’ve sent them,
we might be able to provide that
page in this way. We might have
the order-history page call the
customer service to get the cur-
rent version of the customer’s
information — maybe her name,
her address, and how many
things we have sent her. Then, it
can go to the order service to get
details about all of her orders. It
gets a single customer from the
customer service then will que-
ry for the orders that match that
customer on the order service.

This is a pattern used on basically
every webpage that does not get
all of its data from one service.
Again, this is a totally legitimate
solution to this problem. We use
it all the time at Stitch Fix, and I’m
sure you use it all over the place
in your applications as well.

But let’s imagine that this doesn’t
work, whether for reasons of per-
formance or reliability or maybe
we’re querying the order service
too much.

For approach number two, we
create a service that does what I
like to call, in database terminolo-
gy, “materializing the view”. Imag-
ine we are trying to produce an
item-feedback service. At Stitch
Fix, we send boxes out, and peo-
ple keep some of the things that
we send and return some. We
want to know why, and we want
to remember which things are
returned and which are kept. This
is something that we want to re-
member using an item-feedback
service. Maybe we have 1,000 or
10,000 units of a particular shirt
and we want to remember all
customer feedback about that
shirt every time we sent it. Multi-
ply that effort by the tens of thou-
sands of pieces of inventory that
we might have.

To do this, we are going to have
an item service, which is going
to represent the metadata about
this shirt. The item-feedback ser-
vice is going to listen to events
from the item service, such as
new items, items that are gone,
and changes to the metadata if
that is interesting. It will also listen
to events from the order service.
Every piece of feedback about an
order should generate an event
— or, since we send five items in
a box, possibly five events. The
item-feedback service is listening
to those events and then mate-
rializing the join. In other words,
it’s remembering all the feedback
that we get for every item in one
cached place. A fancier way to say
that is that it maintains a denor-
malized join of items and orders
together in its own local storage.

Many common systems do this all
the time, and we don’t even think
that they are doing it. For exam-
ple, any sort of enterprise-grade
(i.e., we pay for it) database sys-
tem has a concept of a materi-
alized view. Oracle has it, SQL
Server has it, and a bunch of en-
terprise-class databases have a
concept of materializing a view.

Most NoSQL systems work in this
way. Any of the Dynamo-inspired
data stores, like DynamoDB from
Amazon, Cassandra, React, or
Voldemort, all which come from
a NoSQL tradition, force us to do
it up front. Relational databases
are optimized for easy writes —
we write to individual records or
to individual tables. On the read
side, we put it all together. Most
NoSQL systems are the other way
around. The tables that we store
are already the queries that we
wanted to ask. Instead of writing
to an individual sub-table at write
time, we are writing five times to
all of the stored queries that we
want to read from. Every NoSQL
system is forcing us up front to do
this sort of materialized join.

2018 Microservices // eMag Issue 59 - Mar 2018 39

Every search engine that we use
almost certainly is doing some
form of joining one particular
entity with another particular
entity. Every analytical system
on the planet is joining lots of
different pieces of data, because
that is what analytical systems are
about.

I hope this technique now sounds
a little bit more familiar.

Transactions
The wonderful thing about rela-
tional databases is this concept
of a transaction. In a relational
database, a single transaction
embodies the ACID properties:
it is atomic, consistent, isolated,
and durable. We can do that in a
monolithic database. That’s one

of the wonderful things about
having THE database in our sys-
tem. It is easy to have a transac-
tion cross multiple entities. In
our SQL statement, we begin the
transaction, do our inserts and
updates, then commit and that
either all happens or it doesn’t
happen at all.

Splitting data across services
makes transactions hard. I will
even replace “hard” with “impos-
sible”. How do I know it’s impossi-
ble? There are techniques known
in the database community for
doing distributed transactions,
like two-phased commit, but
nobody does them in practice.
As evidence of that fact, consid-
er that no cloud service on the
planet implements a distributed

transaction. Why? Because it is a
scalability killer.

So, we can’t have a transaction —
but here is what we can do. We
turn a transaction where we want
to update A, B, and C, all together
as a unit or not at all, into a saga.
To create a saga, we model the
transaction as a state machine of
individual atomic events. Figure
3 may help clarify this. We re-im-
plement that idea of updating A,
updating B, and updating C as a
workflow. Updating the A side
produces an event that is con-
sumed by the B service. The B ser-
vice does its thing and produces
an event that is consumed by the
C service. At the end of all of this,
at the end of the state machine,
we are in a terminal state where A
and B and C are all updated.

Figure 3: Workflows and sagas.

2018 Microservices // eMag Issue 59 - Mar 201840

Now, let’s imagine something
goes wrong. We roll back by ap-
plying compensating operations
in the reverse order. We undo
the things we were doing in C,
which produces one or several
events, and then we undo the
set of things that we did in the B
service, which produces one or
several events, and then we undo
the things that we did in A. This
is the core concept of sagas, and
there’s a lot of great detail be-
hind it. If you want to know more
about sagas, I highly recommend
Chris Richardson’s QCon presen-
tation, Data Consistency in Micro-
services Using Sagas.

As with materializing the view,
many systems that we use every
day work in exactly this way. Con-
sider a payment-processing sys-
tem. If you want to pay me with
a credit card, I would like to see
the money get sucked out of your
account and magically end up in
my wallet in one unit of work. But
that is not what actually happens.
There are tons of things behind
the scenes that involve payment
processors and talking to the dif-
ferent banks and all of this finan-
cial magic.

In the canonical example of when
we would use transactions, we
would debit something from
Justin’s account and add it to
Randy’s account. No financial sys-
tem on the planet actually works
like that. Instead, every financial
system implements it as a work-
flow. First, money gets taken out
of Justin’s account, and it lives in
the bank for several days. It lives
in the bank longer than I would
like, but it ultimately does end up
in my account.

As another example, consider
expense approvals. Probably ev-
erybody has to get expenses ap-
proved after a conference. And
that does not happen immediate-
ly. You submit your expenses to
your manager, and she approves
it, and it goes to her boss, and she
approves it... all the way up. And
then your reimbursement follows
a payment-processing workflow,
where ultimately the money goes
into your account or pocket. You
would prefer this to be a single
unit, but it actually happens as a
workflow. Any multi-step work-
flow is like this.

If you write code for a living,
consider as a final example what
would happen if your code were

deployed to production as soon
as you hit return on your IDE.
Nobody does that. That is not an
atomic transaction, nor should it
be. In a continuous-delivery pipe-
line, when I say commit, it does
a bunch of stuff, the end result
of which is, hopefully, deployed
to production. That’s what the
high-performing organizations
are doing. But it does not hap-
pen atomically. Again, it’s a state
machine: this step happens, then
this happens, then this happens,
and if something goes wrong
along the way, we back it out. This
should sound familiar. Stuff we
use every day behaves like this,
which means there is nothing
wrong with using this technique
in the services we build.

To wrap up, we have explored
how to use events as tools in
our architectural toolbox. We’ve
shown how we can use events
to share data between differ-
ent components in our system.
We have figured out how to use
events to help us implement
joins. And we have figured out
how to use events to help us do
transactions.

https://www.infoq.com/presentations/saga-microservices
https://www.infoq.com/presentations/saga-microservices
http://bit.ly/2tOb1Nf

2018 Microservices // eMag Issue 59 - Mar 2018 41

At Stitch Fix, we are on
our own journey. We
did not build a mono-
lithic application, but
our version of the
monolith problem
is the monolithic
database we built.

We are breaking up our
monolithic database
and extracting services
from it but there are
some great things that
we would like to retain.

PREVIOUS ISSUES

58
This eMag explores the topic of observability in-depth,
covering the role of the “three pillars of observability” --
monitoring, logging, and distributed tracing -- and relates
these topics to designing and operating software systems
based around modern architectural styles like microser-
vices and serverless.

Observability

Cloud Native

In this eMag, the InfoQ team pulled together stories
that best help you understand this cloud-native rev-
olution, and what it takes to jump in. It features inter-
views with industry experts, and articles on key topics
like migration, data, and security.

55

Faster,
Smarter DevOps

This DevOps eMag has a broader setting than pre-
vious editions. You might, rightfully, ask “what does
faster, smarter DevOps mean?”. Put simply, any and
all approaches to DevOps adoption that uncover im-
portant mechanisms or thought processes that might
otherwise get submerged by the more straightfor-
ward (but equally important) automation and tooling
aspects.

56

Streaming Architecture

This InfoQ emag aims to introduce you to core stream
processing concepts like the log, the dataflow model,
and implementing fault-tolerant streaming systems.

57

https://www.infoq.com/minibooks/emag-apm-observability?utm_source=infoq&utm_medium=Microservices-eMag&utm_campaign=internal
https://www.infoq.com/minibooks/emag-cloud-native?utm_source=infoq&utm_medium=Microservices-eMag&utm_campaign=internal
https://www.infoq.com/minibooks/emag-faster-smarter-devops?utm_source=infoq&utm_medium=Microservices-eMag&utm_campaign=internal
https://www.infoq.com/minibooks/emag-streaming-architecture?utm_source=infoq&utm_medium=Microservices-eMag&utm_campaign=internal

