
Софтверске грешке

3

“To err is human; to forgive, divine.”

“ …but to really foul up requires a computer..”

“From novice to the best, from the inexperienced to
the experienced, from young to old, all
designers/programmers make errors.”

4

“mistake, error, fault”

“ a wrong action attributable to bad judgment or
ignorance or inattention; "he made a bad mistake";
"she was quick to point out my errors"; "I could
understand his English in spite of his grammatical
faults"

5

Analyst/Designer/Programmer makes a mistake.

Fault appears in the program.

Fault remains undetected during testing.

The program fails during execution i.e. it behaves unexpectedly.

6

Set of inputs, also known
as the Input domain

Correct operation

Incorrect operation

Error revealing
domain

7

Goal of testing and debugging: Reduce the set of failure causing inputs to null.

IdealReality

8

• Funny: Will likely generate laughter.

• Fatal: May cause death.

• Inconvenience: May require machine reboot.

• Disaster: May cause loss of property.

10

• “The opera Tosca debuted just over one
hundred years ago, at the Teatro Constanzi
in Rome on January 14, 1900. Soon after its
premiere, it became one of the most
popular operas in the repertoire, and it
remains so to this day.”

11

• “It was the candelabra that played a prominent role
in a San Diego performance of Tosca in 1956. The
script called for Tosca to blow out the four candles
in the candelabra before dramatically placing a
candle on either side of Scarpia and a crucifix on his
breast and exiting the stage.

• With modern fireproofing the fire-risk is usually
considered small enough to permit the use of real
candles.”

12

• “In San Diego, however, the candles were not only electric, but
the order of their going out was fixed on a computer tape along
with all the rest of the lighting cues.

• The tape obeyed the stage manager's signal and snuffed the
candles exactly as Tosca blew them out - except that on this
occasion the programming was wrong and it blew them out in
a different order from hers.”

13

• She blew to the right, the candle on the left went
out, she blew the back one, the one in front went
out!

• To further confuse the situation, as she began E
avanti a lui tremava tutta Roma (And before him all
Rome trembled), the electronic bleep for the curtain
arrived too soon and the curtain shut with furious
speed before she had finished.

15

• A nuclear reactor was shut down because a single line of code was coded as X = Y instead

of X=ABS (Y) i.e. the absolute value of Y irrespective of whether Y was positive or negative.

• On July 1-2, 1991, computer-software collapses in telephone switching stations disrupted

service in Washington DC, Pittsburgh, Los Angeles and San Francisco.

• In May 1992, Pepsi fan a promotion in the Philippines. It told customers they could win a

million pesos (approx. $40,000) if they bought a bottle of Pepsi and found number 349

stamped on the underside of the bottle cap. Unfortunately, due to a software error, 800,000

bottle caps were produced with number 349 instead of one, which was an equivalent of $42

billion in prize money. It cost the company dearly as some people pursued their claims

through the courts and Pepsi paid out millions of dollars in compensation.

16

• February 1994. Chemical Bank managed to allow $15 million to be withdrawn

incorrectly from 100,000 accounts - a single line error in the program caused every ATM

on their network to process the transaction twice

• The Mars Climate Orbiter crashed in September 1999 because of a "silly mistake": wrong

units in a program.

• A cat was registered as a voter to demonstrate risks (no photograph required).

• Blue Cross of Wisconsin installed a new $200m claims processing system - it sent out

$60 million in unwarranted and duplicate payments. Also, when a data entry clerk typed

'none' in the town field the system sent hundreds of checks to the non-existent town of

'NONE' in Wisconsin

18

• French rocket Ariane 501 was scheduled to
launch on the morning of June 4, 1996, from the
launch site in Kourou, French Guiana.

• Failure of the launch due to the un-manned
rocket exploding after 42 seconds from the time
of the launch.

19

• An internal software exception was caused

during execution of a data conversion from a 64-

bit floating-point number to a 16-bit signed

integer value.

• The value of the floating-point number was

greater than what could be represented by a 16-

bit signed integer (e.g. 43,445).

• The data conversion instructions were not

protected from causing operand errors.

20

• “The guidance system for Ariane 5 was an upgrade from Ariane 4.

But Ariane 5 had a different trajectory which pushed one of the

numerical parameters out of bounds.”

• “ This would have been caught in testing, but only if the testing

specification were properly upgraded to work for Araine 5. That

didn't happen although the specifications and development

processes are at the same level as NASA uses. They still failed.”

22

“The Therac-25 was a computerized radiation therapy

machine.”

“The Therac-20, a predecessor of the Therac-25, employed

independent protective circuits and mechanical interlocks to

protect against overdose. The Therac-25 relied more heavily

on software.”

23

“The Therac-25 supported a multitasking environment, and the

software allowed concurrent access to shared data. This

precarious implementation caused program failure under certain

(race) conditions.”

24

“The machine massively overdosed patients at least six times

between June 1985 and January 1987. Each overdose was

several times the normal therapeutic dose and resulted in the

patient's severe injury or even death.”

26

• Robert Charette: Why Software Fails, IEEE Spectrum, September 2005,

https://spectrum.ieee.org/why-software-fails

• Robert Charette, Joshua Romero: Lessons From a Decade of IT Failures,

IEEE Spectrum, October 2015,

https://spectrum.ieee.org/lessons-from-a-decade-of-it-failures

27

Lesson 1. The Staggering Impact of IT Systems Gone Wrong

• The world has relied on large-scale IT systems for decades, but we still

haven’t learned how to prevent and avoid major glitches and failures.

• When we looked back over the decade, several themes became impossible to
ignore:
• Modernizing IT Systems Is Difficult and Expensive
• Digitizing Health Records Is Difficult and Expensive
• Banks Rely on Unreliable Technology
• Even Brief Stock-Exchange Glitches Are Costly
• Even Brief Air-Travel Glitches Are Costly

28

Lesson 2: Overcomplexifying, Underdelivering

• It is hard to build IT systems, but it’s arguably even more difficult to maintain

them properly over time

• Very often, decades of neglect have resulted in a tangled mess of poorly

understood and poorly implemented systems that limit operational effectiveness

and efficiency

• In the past decade, we’ve seen numerous attempts to combine the functionality of

such legacy systems into a single modern replacement system

• That’s easier said than done

29

Lesson 3: The Life Cycles of Failed Projects

• IT projects rarely fail all at once

• Instead, these failures tend to snowball, growing larger and more hopeless as time

goes on

• Along the way, the definition of success is prone to mutation, as deadlines get

pushed back and budgets increase

• That’s how a project can launch “ahead of schedule” even if it’s more than three

years late.

30

Lesson 3:

U.S. Air Force’s

Expeditionary Combat

Support System

31

Lesson 4: The IT Failure Blame Game

• When IT systems fail, there’s always a reason.

• If you dig deep enough, at the root of any problem are human decisions: sloppy

code, insufficient testing, poorly understood dependencies, and incorrect

assumptions.

• Yet when we read about (and report on) failures, the language we use tends to

assign blame to inanimate technology that can’t defend itself or get fired.

32

The cadavers of dead IT projects are

buried under mounds of cash

One of them:

https://spectrum.ieee.org/uk-firecontrol-project-finally-axed

Највећи део материјала ове презентације је преузет из чланака:
• Why Software Fails, аутора Robert Charette:, IEEE Spectrum, September 2005,

https://spectrum.ieee.org/why-software-fails
• Lessons From a Decade of IT Failures , аутора Robert Charette, Joshua Romero, IEEE

Spectrum, October 2015,
https://spectrum.ieee.org/lessons-from-a-decade-of-it-failures

33

