PA3BO] CO®TBEPA 2

) /[EOUHULINIA MUKPOCEPBHCA

The monolith

* Too big to understand
T * Changes in one area require the
s | ArePtectie full build & delivery
* Long build, deploy & startup

w0 times

* Changes in one area have to wait
T for other areas to be ready in
= order to be available

SENDGRID
ADAPTER

* Typically highly coupled modules

* Difficult to scale

https://www.nginx.com/blog/introduction-to-microservices/

AKF Scale Cube Qakf _

Near l" \
infinite 'u
1 scale \
I \
| |
SplitbyService ! S
orsimilar ! |
information ; \
|
I
% 1
Y Axis 1
Split by Function, -
Method, Service or : .
. . . . “ T AICHA 1. FISt R
“Dissimilar Things : AT L ABBOTT MK £L
I Further slce
I data or ‘;0\\
Pt s e S S R users \{\'
/, (—,Q
. / . . .
4 +\°’ X9 L @ Martin Abbott, Michael Fisher (2015)
7 ?. \) 0 s
NoSpiits P _ 4 <R QQ? oF The Art of Scalability, The: Scalable Web
' L No:3piks 2 & & Architecture, Processes, and
One monolithic N:anv svslem;:alth aed . é‘\(\ -\\'b‘ QS"’ Organizations for the Modern
System/Service i &gé “c')\é\ ‘_}o@ Enterprise 2nd Edition. Addison-Wesley
Starting Point RS (o Professional

X Axis
Horizontal Duplication

https://akfpartners.com/techblog/2008/05/08/splitting-applications-or-services-for-scale/

Tackling the complexity

Monolith Microservices

https://www.nginx.com/blog/introduction-to-microservices/

Small independently
deployable services that
work together, modelled

around a business
domain

S

Size is not the actual point!

not as big as a server app that
needs to be built and deployed
as a single block

Manageable units of
functionality and deployability

INDEPENDENTLY DEPLOYABLE

No lock-step build and
deployment m

Avoiding the “Distributed
Monolith”

Any organization that designs a system (defined broadly)
will produce a design whose structure is a copy of the

WO R K TO G ET H E R organization's communication structure.

-- Melvyn Conway, 1967

- .-
~
.~
.
~
.
m .
.
-
.
.
.
-

EACEALE D

.

—.————
.
.
.
‘.
.
'
0
.
.
.
.
..--'
-
-
-
-
)
-
\\

Siloed functional teams... ... lead to silod application architectures. Cross-functional teams... ...organised around capabilities
Because Conway's Law Because Conway's Law

https://martinfowler.com/articles/microservices.html

@ 1PUMEP [10C/I0BHOT JIOMEHA

Components

Users

L J

-

ul "Soles J| Support J{ Inventory]

L J

2 ~
Business Sales Support H{ Inventory
A
L 4 v w

Data Access Cinventory]

-

L

Problem Domain

Sales

Sales Opportunity
Contact

Sales Person
Product

Sales Territory

Support
Support Ticket
Customer
Support Person
Product
Resolution

Single Domain Model

x/ - _-H__\
{ Customer }
Sales Sales Support _
[Territory Opportunity Product H Tie vz H Resolution }
{ Employee }
\ j

Overlapping Contexts

/ Sales

Support \
S#E Egtrt H Resolution]

Sales Sales
Territory Opportunity

AN

Bounded Contexts

4 \ y N
Sales) O\ Support
Contact 11— Customer
Sal) . sal | (| Support |
ales ales) or .
L Territory /,h[Opportunity L Product J' ‘ — Ticket }7 fesollan

(™

Sales Person ———— _‘
b Y, |

Support
Person

. MUKPOCEPBVCHA
&) APXUTEKTYPA 3A JIATU
~ TIOCJIOBHU JOMEH

Microservice Architectures

i Inventory

HR

Microservice Architectures

i Inventory

HR

Microservice Architectures

Subdivide system | -
Light-weight APIs \
Small teams A

' Inventory

HR

Microservice Architectures

Indepeﬁdeﬂt Sales + —— Inventory
Similar to SOA N A
Size matters “

HR

_ TIPEJJHOCTU U MAHE
&) MUKPOCEPBUCHE
" APXUTEKTYPE

In the begining ‘
everything works fine

Customer
Service

Inventory o

V1

But & happens.

Fortunatelly, no one else
needs to know about it.

Customer
Service

V1

Inventory o

V1

And it happens again ‘ 0

Customer

And we also want to
refactor and update the
technology stack

Customer |
Service

V2

Shipping

And enhance the service va
Customer
Service
V2
Inventory —

V1

Shippin
And scale the parts of the 32 g
system that really need

extra power

Customer
Service

V2

Inventory

V1

And seamingly add new
features
Recommend
V1

V4

Inventory

V2

Shipping

Customer
Service

V2

p—

. Shipping
And all goes well in the V4)
TR RLIRRS
WOIl G{E’C[and Customer

Service

V2

Recommend

V1

BENEFITS

* Focus on one thing and do it right

* Organizational alignment

* Release functionality faster

* Independent scaling

* Technology diversity; Adopt technologies faster
* Enable security concern segregation

* Enable resiliency by designing for failure

DOWNSIDES

* Cognitive overloading (many tooling options)
* Cognitive overloading (system understanding)
* Testing is more complicated

* Monitoring is more complex

* Operational overhead

* Resiliency isn’t free

@) 3AXTEBU 3A MUKPOCEPBUCHY
¥ APXUTEKTYPY

REQUIRES

* Automation

Shipping

* High cohesion V4

* Loose coupling

Customer
Service

e Stable versioned APIs
a.k.a. Maturity

Recommend

V1

Inventory

V2

Business cohesion

HIGH

COHESION Things that change together, stay
together

I;lﬂ Implementation coupling

LOOSE

Domain coupling

COUPLING

Temporal coupling

_ TIOTPEBA 3A
&) MUKPOCEPBHUCHOM
" APXUTEKTYPOM

w % of developers

are about m 7 of features

e chout -

problems at
scale

. 7 of users

ITIS A PATH TO ACHIEVE
A BUSINESS OBJECTIVE

EMBRACE

Eventual Data redundancy No single Long running
consistency & caching cannonical model transactions

Truth is,

Most problem-contexts don’t (usually) have
a “scale problem”

owever, there are several potential seams

Partners Users &
Authorizations

Document
Business processes % management &
printing

Calculations

Customers

Widgets

~. PEAJIMSALIM]A
&) MUKPOCEPBUCHE
" APXUTEKTYPE

If we decide to build it

DESIGNING AND
ARCHITECTING

IDENTIFYING SERVICE BOUNDARIES

Analyze domain

Define bounded
contexts

»

Define entities,
aggregates, and
services

Drone management

External system

T IE
"

Third-party
transportation

~..
LR

»

Identify
microservices

Third-party
transportation

[Scheduler i-

e

)

—

Delivery

Delivery |

History

Shipping bounded context

https://docs.microsoft.com/en-us/azure/architecture/microservices/model/domain-analysis

Drone
Management

THE MICROSERVICES DESIGN CANVAS

Service Name: Description:
Consumer Tasks Interface Dependencies
Service ... QUERIES COMMANDS Service...
» Task List., « Task List.
EVENT SUBSCRIPTIONS EVENT PUBLICATIONS
L L]
: Qualities Logic/Rules Data 2
L] L
Service ... Service ...
» Task List...

Matt Mclarty, Irakli Nadareishvili (2017)

THE MICROSERVICES DESIGN CANVAS

Service Name:

Transaction Search Service

Consumer Tasks

Banking customer
using online banking
web or mobile app

« Search transactions

« Get transaction details

Banking CSR using
branch banking or
call center app

« Search transactions

« Get transaction details

QUERIES

. Quet y Customer transactions

« Get transaction details

EVENT SUBSCRIPTIONS

« Add transaction

+ Add transaction set

Qualities

» Mostly read only, except

for transaction removal

» Medium velume service,
not mission critical

« Direct customer and

delegated authentication

» Not transactional

Description:

The Transaction Search Service allows consumers to find specific
transactions that fit a set of specified criteria. This criteria can range
from date/time, to spending category, to amounts, and more.

Interface Dependencies

COMMANDS

+ Remove transaction

Product-specific
Transaction Service

* Query transactions

EVENT PUBLICATIONS

Data

+ Aggregated transaction

Logic/Rules

» Populate aggregated
transaction store through store
event listening (event

sourcing)

« Filter or adjust data query

based on mput pJ'RﬂlE(’EIR

e —

Matt Mclarty, Irakli Nadareishvili (2017)

Vertical slices

Instead of focusing on the nouns in your system
(Orders, Customers, Products), you instead should
focus on capabilities (Catalog, Checkout).

Each
microservice
owns the end-

to-end

Even the Ul & data store!

Presentation

Data Access

Interacting with the system

Direct connection Use a Facade

https://www.nginx.com/blog/building-microservices-using-an-api-gateway/

APl Gateway

* Authentication

* Throttling

* Translation

* Monitoring & logging usage
* Monetization

* Routing
* Composition
* Hiding implementation details

APl Gateway

Use an API| gateway

REST Product Info

service

ARIEN _REST Recommendanonf

Service

Gateway
12

Review
service

Protocol
translation

Variation: Backends for frontends

Web app
———=>
Gateway

\
Mobile

AN
Gateway

Web application

REST Catalog

service

Recommendation |
REST Service

Review
Public B QRPC service

I
Gateway

https://microservices.io/patterns/apigateway.html

Identity
Provider

Remote
Service

Client

Service

Management |—p Discovery

https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices

| OnetoOne _____lOnetoMany
| P C Synchronous Request/response —

Notification Publish/subscribe
Asynchronous

Request/async response Publish/async responses

P) GET PASSENGER M PASSENGER
REQUEST/RESPONSE MANAGEMENT
e ot
4 pusrsue
PASSENGER
. f DISPATCHER
4 ronsn 5 NOTIFICATION
DRIVER l
MANAGEMENT

https://www.nginx.com/blog/building-microservices-inter-process-communication/

Asynchronous IPC with asynchronous
response

NEW TRIPS - PUBLISH/SUBSCRIBE CHANNEL

Asynchronous IPC with asynchronous
response

NEW TRIPS - PUBLISH/SUBSCRIBE CHANNEL

Service Discovery

Client-side discovery Server-side discovery

10.4.3,1:8736

SERVICE
WETANCEA | Registry-
aware REQUEST
HTTP R —"
Client

104. 4545

104320333

https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/

SAGAS, COMPENSATING TRANSACTIONS

Operation steps to create itinerary

Reserve room
at hotel H2

Book seat on)
flight F2 at hotel H1

Counter
operations

recorded for
each step in the Cancel
long-running seat on seat on
transaction flight F1 flight 72

Compensating transaction to cancel itinerary

Compensation
logic applies business
rules to counter-operations

https://docs.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction

SAGAS, COMPENSATING TRANSACTIONS

s Ordler

CHOREOGRAPHY ORCHESTRATION

Order Service Customer Service

OrderService

/ \:reateo
4 \

/ A A Customer

EJ CreateOrder
cr \teo B
\

" Customer
Service

=== craditLimit
T creditRasenvations

/

approve(

\ oot

https://microservices.io/patterns/data/saga.html

MICROSERVICES AND THE Ul

SINGLE PAGE APPLICATIONS

=frsinamasBob<Mstnames

C/CUSTIDM>

Customer Service

'.
-"'.

<TRCommendations
<amse00TSA<anst

Recommendation
Service

<album:

<Arnsi>Thebrakes-</anise

Catalog

COMPOSITE Ul ASSEMBLY

Customer Service

Catalog

Ul components served from services

@) MHKPOCEPBUCHE
- APXUTEKTYPE

Monolithic deployment approach Microservices application approach

« A traditional application has App 1 * A microservice application
most of its functionality within a segregates functionality into
few processes that are . separate smaller services.
componentized with layers and « Scales out by deploying each
libraries. . service independently with

« Scales by cloning the app on multiple instances across
multiple servers/VMs servers/VMs

Independent
deployment of
microservice

Fine-grained
density of
services

https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/architect-microservice-container-applications/microservices-architecture

GET GET/POST GET/POST

e B2 S
cart m GET GET poST
& & @

CRUD CRUD CRUD
SQL SQL SQL NoSQL
Monolithic Microservices

https://cloudacademy.com/learning-paths/dotnet-monolithic-to-microservices-migration-284/

THE STRANGLER PATTERN

Customers Customers Customers

Dispatcher Dispatcher

Existing
monolithic
application

Original
monolithic
application

Original
monolithic
application

New
module

New
module

http://mycloudcomputing2017.blogspot.com/2017/02/what-is-strangler-application-pattern.html|

3JAK/bYYHAK

* Are not the goal
* Are about problems at scale

* Are manageable units of functionality and

MICrOServices deplovability

* Own the end-to-end

* Require automation and maturity

HAITOMEHA

HajBehu meo maTepujasia oBe nipe3eHTalyje je Mpey3eT U3 Ipe3eHTaluje
Clean Architecture, ayTopa Matthew Renze, Kkoja je ocTynHa Ha agpecu:

©

https://matthewrenze.com/wp-content/uploads/presentations/clean-architecture.pdf

