
CAP Теорема

• Conjectured by Prof. Eric Brewer at PODC
(Principle of Distributed Computing) 2000
keynote talk

• Described the trade-offs involved in
distributed system

• It is impossible for a web service to provide
following three guarantees at the same time:

• Consistency
• Availability
• Partition-tolerance

Consistency:
All nodes should see the same data at the same time

Availability:
Node failures do not prevent survivors from continuing to

operate

Partition-tolerance:
The system continues to operate despite network partitions

A distributed system can satisfy any two of these guarantees at
the same time but not all three

C A

P

 A simple example:

Hotel Booking: are we double-booking
the same room?

Bob Dong

 A simple example:

Hotel Booking: are we double-booking
the same room?

Bob Dong

 A simple example:

Hotel Booking: are we double-booking
the same room?

Bob Dong

 2002: Proven by research conducted
by Nancy Lynch and Seth Gilbert at
MIT

Gilbert, Seth, and Nancy Lynch. "Brewer's
conjecture and the feasibility of
consistent, available, partition-tolerant
web services." ACM SIGACT News 33.2
(2002): 51-59.

 A simple proof using two nodes:

A B

 A simple proof using two nodes:

A B

Not Consistent!

Respond to client

 A simple proof using two nodes:

A B

Not Available!

Wait to be updated

 A simple proof using two nodes:

A B

Not Partition
Tolerant!

A gets updated from B

 The future of databases is distributed (Big Data Trend, etc.)

 CAP theorem describes the trade-offs involved in distributed
systems

 A proper understanding of CAP theorem is essential to making
decisions about the future of distributed database design

 Misunderstanding can lead to erroneous or inappropriate
design choices

 The Relational Database is built on the principle of ACID (Atomicity,
Consistency, Isolation, Durability)

 It implies that a truly distributed relational database should have
availability, consistency and partition tolerance.

 Which unfortunately is impossible …

C A

P

• Of the following three guarantees potentially
offered a by distributed systems:

• Consistency
• Availability
• Partition tolerance

• Pick two

• This suggests there are three kinds of
distributed systems:

• CP
• AP
• CA

Any problems?

 How about CA?

 Can a distributed system (with
unreliable network) really be not
tolerant of partitions? C A

 Coda Hale, Yammer software engineer:
 “Of the CAP theorem’s Consistency, Availability, and Partition Tolerance,

Partition Tolerance is mandatory in distributed systems. You cannot
not choose it.”

http://codahale.com/you-cant-sacrifice-partition-tolerance/

http://codahale.com/you-cant-sacrifice-partition-tolerance/

 Werner Vogels, Amazon CTO
 “An important observation is that in larger distributed-scale systems, network partitions are a

given; therefore, consistency and availability cannot be achieved at the same time.”

http://www.allthingsdistributed.com/2008/12/eventually_consistent.html

http://www.allthingsdistributed.com/2008/12/eventually_consistent.html

 Daneil Abadi, Co-founder of Hadapt
 So in reality, there are only two types of systems ... I.e., if there is a partition, does the system

give up availability or consistency?

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html

• Prof. Eric Brewer: father of CAP theorem
• “The “2 of 3” formulation was always

misleading because it tended to
oversimplify the tensions among
properties. ...

• CAP prohibits only a tiny part of the
design space: perfect availability and
consistency in the presence of partitions,
which are rare.”

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

C A

P

• Consistency and Availability is not
“binary” decision

• AP systems relax consistency in
favor of availability – but are not
inconsistent

• CP systems sacrifice availability for
consistency- but are not unavailable

• This suggests both AP and CP
systems can offer a degree of
consistency, and availability, as well
as partition tolerance

 Example:
 Web Caching

 DNS

 Trait:
 Optimistic

 Expiration/Time-to-live

 Conflict resolution

 Example:
 Majority protocols

 Distributed Locking (Google Chubby Lock service)

 Trait:
 Pessimistic locking

 Make minority partition unavailable

 Strong Consistency
 After the update completes, any subsequent access will return

the same updated value.

 Weak Consistency
 It is not guaranteed that subsequent accesses will return the

updated value.

 Eventual Consistency
 Specific form of weak consistency

 It is guaranteed that if no new updates are made to object,
eventually all accesses will return the last updated value (e.g.,
propagate updates to replicas in a lazy fashion)

 Causal consistency
 Processes that have causal relationship will see consistent data

 Read-your-write consistency
 A process always accesses the data item after it’s update operation

and never sees an older value

 Session consistency
 As long as session exists, system guarantees read-your-write

consistency

 Guarantees do not overlap sessions

 Monotonic read consistency
 If a process has seen a particular value of data item, any

subsequent processes will never return any previous values

 Monotonic write consistency
 The system guarantees to serialize the writes by the same process

 In practice
 A number of these properties can be combined

 Monotonic reads and read-your-writes are most desirable

 Bob finds an interesting story and shares with Alice by posting on her Facebook wall

 Bob asks Alice to check it out

 Alice logs in her account, checks her Facebook wall but finds:

- Nothing is there!

 Bob tells Alice to wait a bit and check out later

 Alice waits for a minute or so and checks back:

- She finds the story Bob shared with her!

 Reason: it is possible because Facebook uses an eventual consistent
model

 Why Facebook chooses eventual consistent model over the strong
consistent one?
 Facebook has more than 1 billion active users

 It is non-trivial to efficiently and reliably store the huge amount of data
generated at any given time

 Eventual consistent model offers the option to reduce the load and
improve availability

 Dropbox enabled immediate consistency via synchronization in many cases.

 However, what happens in case of a network partition?

 Let’s do a simple experiment here:

 Open a file in your drop box

 Disable your network connection (e.g., WiFi, 4G)

 Try to edit the file in the drop box: can you do that?

 Re-enable your network connection: what happens to your dropbox folder?

 Dropbox embraces eventual consistency:
 Immediate consistency is impossible in case of a network partition

 Users will feel bad if their word documents freeze each time they hit
Ctrl+S , simply due to the large latency to update all devices across WAN

 Dropbox is oriented to personal syncing, not on collaboration, so it is
not a real limitation.

 In design of automated teller machine (ATM):

 Strong consistency appear to be a nature choice

 However, in practice, A beats C

 Higher availability means higher revenue

 ATM will allow you to withdraw money even if the machine is partitioned from
the network

 However, it puts a limit on the amount of withdraw (e.g., $200)

 The bank might also charge you a fee when a overdraft happens

 An airline reservation system:
 When most of seats are available: it is ok to rely on somewhat out-of-

date data, availability is more critical

 When the plane is close to be filled: it needs more accurate data to
ensure the plane is not overbooked, consistency is more critical

 Neither strong consistency nor guaranteed availability, but it may
significantly increase the tolerance of network disruption

 No single uniform requirement

 Some aspects require strong consistency

 Others require high availability

 Segment the system into different components

 Each provides different types of guarantees

 Overall guarantees neither consistency nor availability

 Each part of the service gets exactly what it needs

 Can be partitioned along different dimensions

 Data Partitioning

 Operational Partitioning

 Functional Partitioning

 User Partitioning

 Hierarchical Partitioning

Data Partitioning

• Different data may require different consistency and availability

• Example:
• Shopping cart: high availability, responsive, can sometimes suffer

anomalies

• Product information need to be available, slight variation in inventory is
sufferable

• Checkout, billing, shipping records must be consistent

Operational Partitioning

• Each operation may require different balance between consistency and
availability

• Example:
• Reads: high availability; e.g.., “query”

• Writes: high consistency, lock when writing; e.g., “purchase”

Functional Partitioning

• System consists of sub-services

• Different sub-services provide different balances

 Example: A comprehensive distributed system
 Distributed lock service (e.g., Chubby) :

 Strong consistency

 DNS service:

 High availability

User Partitioning

• Try to keep related data close together to assure better performance

 Example: Craglist
 Might want to divide its service into several data centers, e.g., east coast

and west coast

 Users get high performance (e.g., high availability and good
consistency) if they query servers closet to them

 Poorer performance if a New York user query Craglist in San Francisco

Hierarchical Partitioning

• Large global service with local “extensions”

 Different location in hierarchy may use different consistency

 Example:
 Local servers (better connected) guarantee more consistency and

availability

 Global servers has more partition and relax one of the requirement

 Tradeoff between Consistency and Latency:

 Caused by the possibility of failure in distributed systems
 High availability -> replicate data -> consistency problem

 Basic idea:
 Availability and latency are arguably the same thing: unavailable

-> extreme high latency

 Achieving different levels of consistency/availability takes
different amount of time

 A more complete description of the space of potential tradeoffs for
distributed system:
 If there is a partition (P), how does the system trade off availability

and consistency (A and C); else (E), when the system is running
normally in the absence of partitions, how does the system trade off
latency (L) and consistency (C)?

Abadi, Daniel J. "Consistency tradeoffs in modern distributed
database system design." Computer-IEEE Computer Magazine
45.2 (2012): 37.

C A C L

Partitioned Normal

 PA/EL Systems: Give up both Cs for availability and lower latency
 Dynamo, Cassandra, Riak

 PC/EC Systems: Refuse to give up consistency and pay the cost of
availability and latency
 BigTable, Hbase, VoltDB/H-Store

 PA/EC Systems: Give up consistency when a partition happens
and keep consistency in normal operations
 MongoDB

 PC/EL System: Keep consistency if a partition occurs but gives up
consistency for latency in normal operations
 Yahoo! PNUTS

Највећи део материјала ове презентације је преузет из презентације
CAP Theorem, аутора Dong Wang, која је доступна на адреси:
https://www3.nd.edu/~dthain/courses/cse40822/fall2014/slides/cse40822-CAP.pptx

51

https://www3.nd.edu/~dthain/courses/cse40822/fall2014/slides/cse40822-CAP.pptx

